The Social Areas of

Cincinnati

An Analysis of Social Needs

School of Planning University of Cincinnati United Way | University of Cincinnati Community Research Collaborative

Greater Cincinnati Community
We are pleased to present the publication of The Social Areas of Cincinnati: An Analysis of Social Needs, Fifth Edition. The first two editions, 1974 and 1986, were authored by Michael Maloney and published by the Cincinnati Human Relations Commission. The Third Edition, co-authored by Dr. Janet Buelow, was published by the School of Planning of the University of Cincinnati in 1997. The Fourth Edition was co-authored by Dr. Christophe Auffrey, also of the School of planning and was published in 2004.

This Fifth Edition updates the previous editions using data from the 2005-2009 American Community Survey. It shows how Cincinnati, its neighborhoods and its surrounding area have changed since 1970. This edition, for the first time, goes beyond the 19707 -county SMSA boundaries and includes some data for the 15-county Consolidated Metropolitan Statistical Area and the 20-County region served by the Health Foundation of Greater Cincinnati. Although much of the report focuses on the City of Cincinnati, regional leaders will want to pay close attention to chapters 10 and 11 and the census tract tables included in these chapters and in the Appendix.

The social areas maps (Figures 2, 13, 14 and 15) provide templates for plotting various variables such as crime, poverty, race, education, and unemployment. Local researchers have used this study as a framework in research on health needs, racial integration, and service disparities. Agencies have used the study as a needs assessment tool, in writing grant proposals, and in making decisions regarding target areas and facility locations. County leaders have used the social areas to plan allocation of community investments and antipoverty resources. Advocacy groups and neighborhood leaders have used the study to develop a case for services and public works projects.

Neighborhood advocates and planners in Cincinnati should note that our studies use the 48 statistical neighborhoods established by the City Planning Commission, not the 2010 SNA boundaries. The fact that the census tract is our basic unit of analysis helps ameliorate this problem for neighborhoods such as Pendleton and East Westwood.

Readers are welcome to contact the authors for presentations, for advice on how to utilize this report in planning, proposal writing, or advocacy. Those who feel that the data in this report are in error or misinterpreted should contact the authors. Any serious errors will be corrected in future printings and in the online version which is available at www.socialareasofcincinnati.org.

Michael Maloney and Christopher Auffrey with Eric Rademacher and John Besl

Social Areas of Cincinnati

Acknowledgments

Project Funding

This project was supported by grants from United Way, the Greater Cincinnati Foundation, the Seasongood Good Government Foundation, and the Health Foundation of Greater Cincinnati.

Supporting Organizations

The Urban Appalachian Council provided grant administration and moral support.

Special Thanks

Dr. Eric Rademacher, Community Research Collaborative, Fund Raising; Dr. Robert Ludke, University of Cincinnati, School of Health, Health Chapter Author; Dr. Phillip Obermiller, a visiting scholar at the University of Cincinnati School of Planning; and Dr. John Bryant, editorial review.

Project Staff

Project Staff	Michael Maloney
Author and Editor	Michael Maloney, M. Ed., MRP
Principal Investigator	Christopher Auffrey, Ph.D
	School of Planning
	University of Cincinnati
Maps, Statistical Analysis and Cover Design Venkata Krishna Kumar Matturi	
Project Advisors	Eric Rademacher, Ph.D, Director
	Community Research Collaborative
	Toby Sallee, Community Research Collaborative
	John Besl, Children's Hospital Medical Center
Word Processing and Design	Jeffrey Dey, MBA
Health Chapter	Robert Ludke, Ph.D.
	Professor Emeritus in Family and
	Community Medicine
	University of Cincinnati

Correspondence

All correspondence regarding this report should be given to:
Mike Maloney
Michael Maloney and Associates
5829 Wyatt Avenue
Cincinnati, Ohio 45213
Tel: 513.531.8799
Fax: 513.531.3899
Email: meamon@aol.com

Web Access

This study may be accessed through www.socialareasofcincinnati.org or www.crc.uc.edu.

Table of Contents

Executive Summary ix
Chapter 1: Early Work in Social Area Analysis 1
Chapter 2: The Social Areas of Cincinnati 5
Chapter 3: The Census Tract Map Method 27
Chapter 4: Poverty, Race and Gender in Cincinnati 29
Chapter 5: Appalachian Cincinnati 51
Chapter 6: Education in Cincinnati 57
Chapter 7: The Elderly and Children 71
Chapter 8: Unemployment and Joblessness 83
Chapter 9: The Neighborhoods 1970 to 2005-2009 Comparisons 91
Chapter 10: Health and Wellness 103
Chapter 11: Cincinnati as a Metropolis 109
Chapter 12: Summary of Findings and Policy Recommendations 127
Appendix I: References 141
Appendix II: SES Index and Variables for Cincinnati City Census Tracts 145
Appendix III: Neighborhood Changes 1970 to 2000-2009 151
Appendix IV: SES Index and Variables for Metropolitan Census Tracts 159
Appendix V: Definitions of Variables 173
Appendix VI: SES Index and Variables for Cincinnati Metropolitan Area 15 County Census Tracts, 2005-2009 175
Appendix VII: SES Index and Variables for Cincinnati Metropolitan Area 20 County Census Tracts, 2005-2009 193
Appendix VIII: Changes in Statistical Neighborhood Approximations (SNAs) for the 2010 Csnsus 213

Index of Tables

TABLE DESCRIPTION
1a Definitions of SES Index and Indicators 2
1b Correlation Matrix for SES Variables 2005-2009 3
2a Cincinnati Census Tracts and SES Quartiles by Neighborhood 9
2b City of Cincinnati Summary Statistics for SES Quartiles, 1970-2005-2009 14
2c City of Cincinnati Average SES Indicators by Quartile 1970-2005-2009 17
2d City of Cincinnati Summary Statistics 1970-2005-2009 18
2e Neighborhoods that declined 10 points or more between 1970 and 1980 23
2f-1 Neighborhoods that Experienced the Greatest Decline 1970-2005-2009 23
2f-2 Neighborhoods that Experienced the Greatest Decline 1980-1990 23
2g-1 Neighborhoods that Experienced the Greatest Decline 1990-2000 23
2g-2 Neighborhoods that Declined 10 points or more, 2000-2005-2009 24
2h Neighborhoods that Experienced the Greatest Decline, 1970-2005-2009 25
4a Cincinnati Neighborhoods: Median Family Income and Families Below Poverty 2005-2009 34
4b Cincinnati Neighborhoods: Women and Poverty, 2005-2009 36
4c Neighborhood Status, 2005-2009 38
4d Cincinnati Neighborhoods: Race Composition and Poverty, 2005-2009 41
4d-2 Changes in SES Scores for Work Class African American Neighborhoods 43
4e Cincinnati Neighborhoods: African American Population, 1970-2005-2009 44
4f Hispanic population concentrations 2005-2009 46
$4 \mathrm{~g} \quad$ Neighborhoods with the largest Hispanic population increase, 2000-2005-2009 47
5a Criteria for classifying neighborhoods as Appalachian 53
5b Cincinnati Neighborhoods with Appalachian Census Tracts, 2005-2009* 53
5c Cincinnati Appalachian Neighborhood Populations, 1970-2005-2009 54
5d Socioeconomic indicators: Cincinnati Appalachian Neighborhoods, 1970-2005-2009 56
6a Cincinnati Neighborhoods: Drop-out Rates, 1980-2005-2009 59
6b Cincinnati Neighborhoods: Education Level of Adults, 2005-2009 61
6c Cincinnati Neighborhoods: Changes in Education Levels of Adults, 1970-2005-2009 64
6d-1 Ten Census Tracts with the Highest Rate of Adults, 2000-2005-2009 66
6d-2 Ten Neighborhoods with Highest Rates of Non-High School Completion, 2005-2009 67
6e Trends in High School Graduates and Dropouts, 1970-2005-2009 67
7a Trends in the Population Over 60 years of Age, 1970-2005-2009 72
7b Cincinnati Neighborhoods: Changes in Senior Population, 1970-2005-2009 74
7c Neighborhoods with Largest Percentage Increase in Population 60 Years and Over, 2000-2005-2009 77
7d Neighborhoods with Highest Number of Persons 60 Years and Over, 2005-2009 77
7e Cincinnati Neighborhoods: Age Compositions, 2005-2009 78
7f Neighborhoods with Highest Number of Children Under 5, 2005-2009 81
8a Cincinnati Neighborhoods: Joblessness and Unemployment Rates, 2005-2009 84
8b Cincinnati Neighborhoods: Changes in Joblessness and Unemployment Rates, 1980-2005-2009 88
9 Cincinnati Neighborhoods: Overall SES index Changes, 1970-2005-2009 92
11a Metropolitan Counties, Their Census Tracts and SES Indices, 2005-2009 113
11b Cincinnati City and Remainder of Metropolitan Area: Comparison of Average SES Indicators by SES Quartile, 2005-2009 115
11c City of Cincinnati and Remainder of Metropolitan Area Comparison of Average SES Indicators by SES Quartile, 2005-2009 117
11d City of Cincinnati as Percent of Metropolitan Area Totals, 2005-2009 118
11e Metropolitan Median Family Incomes and Families Below Poverty, 2005-2009 119
11 f Metropolitan Area Distribution of African American Population, 2005-2009 124
11g Metropolitan Area Adult Education Levels, 2005-2009 124
11h Metropolitan Area Joblessness and Unemployment Rates, 2005-2009 124
12a Family Structure Indicator in Cincinnati, 1970 to 2005-2009 128
I ndex of Illustrations
FIgURE DESCRIPTION
1 2005-2009 Cincinnati City Neighborhoods. 6
2 2005-2009 Cincinnati City SES Quartiles 7, 90
3 Cincinnati City Median Family Income and Areas of Poverty 30
4 2005-2009 Cincinnati City Women and Areas of Poverty 31
5 2005-2009 Cincinnati City African Americans and Areas of Poverty 32
6 Cincinnati City Appalachians and Areas of Poverty 52
7 2005-2009 Cincinnati City High School Dropout Rates 58
8 2005-2009 Cincinnati City Adult Education Levels 63
9 2005-2009 Cincinnati City Functional Literacy Levels. 69
10 2005-2009 Cincinnati City 60 years old and Areas of Poverty 73
11 2005-2009 Cincinnati City Population of Children Less than Five Years of Age and Areas of Poverty 80
12 2005-2009 Cincinnati City Areas of High Unemployment and Areas of Poverty 86
13 2005-2009 Metropolitan Cincinnati 7 Counties SES Quartiles 110
14 2005-2009 Metropolitan Cincinnati 15 Counties SES Quartiles 121
15 2005-2009 Metropolitan Cincinnati 20 Counties SES Quartiles 123

Executive Summary

The Fifth Edition of The Social Areas of Cincinnati shows how Cincinnati, its neighborhoods and surrounding area have changed since 1970. This edition, for the first time, goes beyond the 19707 -county SMSA boundaries and includes data for the 15 -county Metropoli\tan Statistical Area and the 20-County region served by the Health Foundation of Greater Cincinnati.
One of the major purposes of this report is to take the great mass of 2005-2009 ACS data and make it more useful in analyzing the needs of the city and region. The first step in making this data useful is the creation of the SES Index- a composite score based on five indicators. The individual indicators used are outlined below.

Family Income Indicator	Median family income
Education Indicator	Percent of population 25 years of age or older with less education than a high school diploma
Occupation Indicator	Percent of workers in unskilled and semi- skilled occupations
Family Structure Indicator	Percent of children (under the age of 18) living in married-couple, family households
Crowding Indicator	Percent of housing units with more than one person per room

Once the SES Index has been compiled, areas are divided into 4 groups: SES I, SES II, SES III, and SES IV. SES I consists of two types of areas: urban centers and rural areas far removed from the metropolitan core. This group represents areas that are typically thought of as problem areas. SES II can be called a "second stage neighborhoods" because it is statistically a step up from the problems encountered in SES I. SES III can be characterized as a series of middle class enclaves which border SES II or SES I areas on their central perimeter. SES IV is the highest category in the ranking and represents areas where most of the families can provide for their housing, social services, and health needs through the use of private resources. Though most households in SES IV can provide for basic needs without assistance, there are some issues that cut across the social areas such as drug abuse, mental health, a rise in poverty, and services for the elderly.

This classification system helps members of the community and organizations begin to identify areas in need. The map below provides a glimpse of the SES Index findings for the City of Cincinnati.

* Tracts 1,62.02, St. Bernard, Norwood and Elmwood Place have been excluded 00.00 Census tract number from this analysis. See text for more details.

The SES classifications of the social areas within Cincinnati have remained relatively constant over the past four decades. For example, the SES IV areas remained nearly the same during the period between 1970 Census and the 2005-2009 American Community Survey. Mt. Adams, East Walnut Hills and other areas have been added to SES IV. SES I has shifted somewhat to the west and northwest across Mill Creek and somewhat to the east along the Reading Road and Montgomery Road corridors.

The report provides an in-depth analysis of our City's neighborhoods with detailed examinations of poverty, race, Appalachian communities, gender and the elderly. Much of the analysis presented provides information useful in our region's Bold Goals initiative aimed at improving the quality of life in Greater Cincinnati in the areas of Education, Income and Health. In addition to a focus on the City of Cincinnati's neighborhoods, we also present data covering the Greater Cincinnati Region defined in three ways, using 7, 15 and 20county region boundaries.

Early Work in Social Area Analysis

Establishing the I dea of Typologies of Urban Neighborhoods

Common sense and everyday observation tell us that the residential sections of urbanized areas such as Cincinnati are divided into several diverse communities, ranging from slums to high income sections. It is also no secret to community leaders and planners that the social characteristics and needs of these various communities vary greatly, and that policies and programs need to be designed accordingly. But, because urban areas are too complex to allow public officials to rely completely on common sense and personal observations, planners and other students of the city constantly seek empirical tools that will provide a more reliable understanding of the changing character of large urban areas.

One such planning tool is Social Areas Analysis. It is a method of classifying and describing different communities which has been in use since Shevky and Williams(1) applied it to Los Angeles in 1949. Its originators called social areas analysis "...a method of analysis of population data ... to describe the uniformities and broad regularities observed in the characteristics of urban population."(2)
As various economists, geographers, sociologists, and other social scientists have established, there are various kinds of orderly patterns underlying the apparent unsystematic nature, growth, and changes of urban neighborhoods.(3) Social area analysis takes data from the decennial census and they are used to classify each residential census tract in the city, according to a typology which makes possible comparative studies among cities.
Census data are used to construct indicators of the economic, family, and ethnic characteristics of each neighborhood. An analysis of each tract according to its indicators is an empirically tested(4) instrument for determining the small social units of the large urban area. "Boiling
down" the long list of possible variables available from the census to their three indicators is described by Shevky(5):
When the social characteristics of urban populations are studied statistically, it is observed that they follow certain broad regularities, and that the variations in the social characteristics are graded and measurable. When different attributes of a population are isolated or measured, they are found to vary in relation to other attributes of the same population in an orderly manner.
Social areas analysis as developed by Shevky and Bell was more appropriate for describing Los Angeles in 1949 than Cincinnati in 2010. Their approach has been described here mainly as an introduction to this type of methodology. A variation of this methodology developed by the Census Bureau is the actual methodology used in the present report.

The New Haven Census Use Study

In 1967 a dress rehearsal of the 1970 census was conducted in New Haven, Connecticut. Census data were combined with other information sources to develop a health information system, which in turn was used to construct social indicators at the census tract and block group level.

Components of the information system were:
a) Census data - 100 percent and 25 percent samples
b) Family Health Survey
c) Vital Records
d) Hospital obstetrical records

The purposes of the New Haven work were (1) to demonstrate how small area analysis of related health and socioeconomic characteristics might identify "high risk" populations; (2) to establish a system whereby related data can be readily retrieved and analyzed using computer technology; and (3) to produce information which would point out health issues, social
problems and needs upon which planners can act and to clearly display those data in a manner which would be convincing to budget directors and consumers.

To organize the large mass of data and to compress the social indexes into a smaller number of indicators (composite variables) one needed to arrive at a measure of socio-economic status (SES). SES was thought of as broader than also, the traditional use of the construct, and approximates an indicator of quality of social life. The large mass of data were then entered into correlation and factor analysis. Of the total number of indicators, those which are most related to each other are selected out and combined into constructs.

The one construct which seemed the most discernible was SES. From correlational analysis and factor analysis, as well as from a theoretical point of view, it was decided that SES is really a combination of five variables - income, occupational status, educational status, family organization, and housing. Health variables tended to display two kinds of clustering which made them either inefficient or too discrete for use in delineating social areas. Many health variables have a high correlation with SES, while others were not associated with SES or each other.

An SES delineation made up of a composite, rather than measured along one dimension such as family income or occupational status, is much more useful for planning purposes. The
problem with using one-dimensional definitions is that the emphasis is usually placed on either the economic or social, rather than the interaction of both. An SES delineation based solely on family income would emphasize the economic while ignoring the social qualities such as family organization and educational status. It would classify as low SES highly educated professionals who have just begun their careers. Family organization is another facet of SES. Families typified by the absence of a male breadwinner considerably reduce the potential for acquiring greater income, better housing, and higher status occupations. We assumed that the methodology of the New Haven study was valid and applied it to Cincinnati. One limitation was the non-availability of health and social data from the human service agencies.(6)

Applying the New Haven Method for Cincinnati

On the basis of the New Haven study and similar studies in Mecklenburg and Forsythe counties in North Carolina, a correlation matrix of 20 variables was developed using Cincinnati census tract data from the American Community Survey 2005-2009 (ACS) (population characteristics and housing characteristics). The 20 variables are presented in Table 2b. The Correlation Matrix (Table 1b) shows the degree of relationship between the five variables which are defined in Table 1a.

Table 1 b is a matrix in which the rows correspond to the columns. Row 1 and Column 1

TABLE 1A	
DEFINITION OF SES INDEX AND ITS INDICATORS	
SES Index	The Socio-Economic Status Index is a composite scale developed from the comparative ranking scores of five indicators derived from data from the 2005-2009 American Community Survey (ACS)
Family Income Indicator	Median family income
Education Indicator	Percent of population 25 years of age or older with less education than a high school diploma
Occupation Indicator	Percent of workers in unskilled and semi-skilled occupations
Family Structure Indicator	Percent of children (under the age of 18) living in married-couple, family households
Crowding Indicator	Percent of housing units with more than one person per room
${ }^{\text {a }}$ Previous editions and their data are based on data from the decennial census.	

are median family income which are perfectly correlated as shown by the value 1.000 . The value -0.592 means that the median family income and education have a negative correlation of 0.592 . Remember that the education index is the percentage of the adult population with less than a high school population. So, as income goes up, the education indicator goes down. The value -0.674 means that income and occupation (percentage of blue collar and service workers) are negatively correlated, and so on. The factor that is most highly correlated in Cincinnati with socio-economic status is edu-
cation (0.821). Occupation is second at -0.807 .
This represents an identical pattern with that discovered in the first edition of this report based on the 1970 census. One of the highest correlations in the 2005-2009 data is between family structure and occupation (0.674). The correlation between family income and family structure is almost equally high (0.662).
TABLE 1B
CORRELATION MATRIX FOR SES VARIABLES, 2005-2009

	Family Income Indicator	Education Indicator	Occupation Indicator	Crowding Indicator	Family Structure Indicator	SES Index
Family Income Indicator	1.000	-0.592	-0.674	-0.260	0.662	0.794
Education Indicator		1.000	0.654	0.330	-0.517	-0.821
Occupation Indicator			1.000	0.346	-0.444	-0.807
Crowding Indicator				1.000	-0.144	-0.471
Family Structure Indicator					1.000	0.781

Chapter 2

The Social Areas of Cincinnati

The Four Social Areas Described

One of the major purposes of this report is to take the great mass of $2005-2009$ ACS data and make it more useful for the purpose of analyzing the needs of various sections of the city.

In Chapter 1 we have described the process whereby the census tracts were ranked according to a complex index of social class and then grouped into four quartiles. Appendix II gives us the actual census tracts and their index numbers. The neighborhoods, their census tracts and overall SES index are shown in Table 2a. The quartiles or social areas themselves can be used as units of analysis, along with census tracts and neighborhoods.

Table 2 b shows the summary statistics for the four social areas. Table 2c gives the average statistics. Note that the statistics in any given column in Table 2c merely give the average for all the tracts in that particular quartile. Table 2d gives city totals. Each table presents 1970, 1980, 1990, 2000 and 2005-2009 data.

SES I: A High Problem Area

The Social Area Described

SES I is the area commonly thought of as the inner city. It is "worse off" on all the social indicators listed in Table 1a (see Appendix II for actual values). It is the white area in Figure 2.
It includes five contiguous areas:

1. An area long the western riverfront which includes Sedamsville-Riverside and Riverside-Sayler Park.
2. An area which stretches from the western plateau up the Mill Creek and through Mount Airy.
3. Much of the Basin Area north of downtown. This includes three census tracts in Over-the-Rhine and three in the West End.
4. An area including most of Avondale and Walnut Hills and one of the Evanston tracts.
5. The neighborhood of Winton Hills on the northern edge of the city which includes large public housing projects.

During the 2000s SES I on the East Side shrunk by one Evanston tract. On the West Side it grew by five tracts including most of East Price Hill, all of Mount Airy, and one tract in West Price Hill. In a dramatic shift, two Over-the-Rhine tracts (Pendleton and Main Street districts) moved from SES I to SES III. In the West End Tract 3.02 moved to SES II. Of the five SES I areas only the one on the West Side expanded. SES I has shifted little since 1970. The addition of five new tracts on the West Side is the most dramatic demographic shift in Cincinnati since this study began in 1970. Table 2b shows the statistics for each quartile for the five census periods. SES I has about 16,000 fewer people compared to 1970 (It is not the same geographic area.) and more than 4000 fewer families. It is 60.4% African American compared to 81% in 2000 and 55% in 1970. The percent first generation immigrants rose from 1% in 2000 to 3% in 2005-2009 perhaps reflecting the growth of the Hispanic population. The percent of immigrants was also 3\% in 1970 though at that time most were European. The percentage of immigrants in the other three quartiles changed little in the 2000s. The poverty rate for house-

> SES I is 60.4\% African American compared to 81\% in 2000 and 55\% in 1970.

holds in this new; more west side, SES I area is higher than 1970 (37.2% vs. 34%) but down from 2000 (45%). The number of households in poverty fell from 11,745 to 10,226. Most of the tracts classified as Appalachian in Chapter 5 are in the West Side SES I cluster. Nearly four (3.8) \% of the dwelling units are overcrowded down from 6 percent in 2000. The percentage of dwelling units that are single family rose from 15% in 1970 to 39.3% in 2005-2009. This is only partially attributable to the geographic shift to the west side where single family units are more common than in the Basin (Down-
Figure 1

6
Cincinnati Neighborhood Approximation

$$
\begin{aligned}
& \text { 45. Westwood } \\
& \text { 46. Sedamsville - Riverside } \\
& \text { 47. Riverside - Sayler Park } \\
& \text { 48. Sayler Park }
\end{aligned}
$$

Cincinnati Neighborhood Approximation 1. Queensgate
2. West End
3. CBD - Riverfront $\begin{array}{ll}\text { 2. West End } & \text { 24. Pleasant Ridge } \\ \text { 3. CBD -Riverfront } & \text { 25. Kennedy Heights }\end{array}$
$\begin{array}{ll}\text { 4. Over-the-Rhine } & \text { 26. Hartwell } \\ \text { 5. Mt. Adams } & \text { 27. Carthage }\end{array}$
2005-2009 Cincinnati City SES Quartiles
Legend
\square Neighborhood boundary SES Quartiles

\square SES II \square SES IV $N A^{*}$
town, Over-the-Rhine, West End and Queensgate). Another dramatic change in this social area is that both the number $(51,774)$ and percent (60.4) African American were down. The same is true for SES II. Some of this population moved up to SES III

Only 70 percent of the adults have
 a high school education.

 and some left the city as part of Cincinnati's general population loss of 14,000 since 1990 . The unemployment rate fell slightly from 18% in 2000 to 16% in 2005 2009. More than 77 percent of the workers are in blue collar or service occupations. Only 70 percent of the adults have a high school education. The median family income is $\$ 11,482$. The family structure index (\% of children under 18 living in two parent homes) went from 24.4% in 2000 to 22.9% in $2005-2009$. This means that only one child in four now lives in a two parent family in the core inner city.In summary, though all four social areas have been relatively the same geographically since 1970, the SES I portion of the Basin is shrinking and the West Side component has expanded. Since 1990 gentrification has changed the SES designation of the East End from I to IV,

> In 1970 - 1990 SES I, the core inner city, was becoming poorer, more African American, more welfare dependent, and more unemployed. Since 1990 there has been a reversal of these trends.

Liberty Hill from II to IV and some tracts in Over-the-Rhine and West End to SES III and IV. The Avondale-Walnut Hills component of SES I is still large including seven census tracts. However, only one tract in Evanston remains in SES I.
In 1970 - 1990 SES I, the core inner city, was becoming poorer, more African American, more welfare dependent, and more unemployed. Since 1990 there has been a reversal of these trends. By 1990, the percent of households in poverty had peaked at 53%. In 2005-2009 the
percentage had dropped to 37.2%. In the same period, the number of households in poverty fell from 11,745 to 10,226 . The unemployment rate dropped from 18% to 16%. Welfare continued to decline in importance as an economic support. In 1990, 71% of poor households received public assistance. In 2005-2009, that percentage had dropped to 25 . As noted above, some, but not all, of these changes may be a result of the geographic shift of SES I to the west. We say some because the changes began in the 1990s before the big change in SES geography. Whether these generally positive changes in the inner city continue will likely depend on the pace of recovery of the local and national economy, local community development efforts, and the opportunity structure as well as individual and family efforts to overcome obstacles.

SES II: Second Stage Neighborhoods The Social Area Described

We call this area "second stage neighborhoods" because it is statistically a step up from the core inner city. These census tracts are the light pink area in Figure 2. The area includes large sections in the neighborhoods north of downtown (Uptown), sections of the western plateau, several areas on the north side of the city, and several scattered tracts on the east side.
In the 2000s, Tract 43 in the East End became SES IV reflecting rapid gentrification. Two tracts, 102.01 in Westwood and 99.02 in West Price Hill changed from SES IV to SES II, reflecting rapid change in a downward direction. Mount Airy's Tract 85.01 declined from SES II to SES I. Lower Price Hill moved up to SES II. Tract 96 in West Price Hill declined to SES I. Sedamsville-Riverside declined to SES I. Tract 74 in Northside moved up to SES II. In Over-the-Rhine, the Pendleton and Main Street tracts moved up to SES II from SES I. The same thing happened to Tracts 2 and 3.01 in the West End. Tract 25 in Fairview moved to SES III. In Mount Auburn, Tract 23 moved up to SES II. In University Heights, Tract 30 moved up to SES III. Roselawn moved from SES III to SES II. In Madisonville, tract 55

TABLE 2A																
Neighborhood	Census Tract														SAS	
Neighborhood Population	Census Tract SES Index and (Quartile)														Index	Rank
QUARTILE 1																
S. Cumminsville - Millvale	77														11.6	1
3,108	11.6	(1)														
Fay Apartments	85.02														16.4	2
1,923	16.4	(1)														
Winton Hills	80														29.0	3.5
4,801	29	(1)														
East Price Hill	92		93		94		95		96						29.0	3.5
18,798	25	(1)	35.2	(1)	21.8	(1)	26.8	(1)	36.2	(2)						
Camp Washington	28														31.2	5
1,421	31.2	(1)														
Riverside - Sayler Park	104														32.0	6
1,577	32	(1)														
Avondale	34		66		67		68		69						32.4	7
13,967	28	(1)	37.8	(2)	23	(1)	28.4	(1)	44.8	(2)						
Walnut Hills	19		21		35		36		37						32.8	8
6,437	72	(3)	22.2	(1)	19	(1)	21.6	(1)	29	(1)						
Sedamsville - Riverside	103														33.0	9
1,774	33	(1)														
N. Fairmount - English Woods	86.01														34.8	10
3,379	34.8	(1)														
S. Fairmount	87		89												35.8	11
3,275	28	(1)	43.6	(2)												
Mt. Airy	83		85.01												39.2	12
9,965	52.6	(2)	25.8	(1)												

TABLE 2A																
Neighborhood	Census Tract														SAS	
Neighborhood Population	Census Tract SES Index and (Quartile)														Index	Rank
QUARTILE 2																
Bond Hill	63		64												39.5	13
7,219	38	(2)	41	(2)												
Over-the-Rhine	9		10		11		16		17						40.2	14
4,677	30.4	(1)	56.4	(3)	55.8	(3)	27.2	(1)	31.4	(1)						
Linwood	47.02														41.0	15
783	41	(2)														
Winton Place	73														41.8	16
2,549	41.8	(2)														
Carthage	61														42.2	17
2,445	42.2	(2)														
Evanston	38		39		40										42.3	18
7,028	37.8	(2)	34	(1)	55	(3)										
West End	2		3.01		3.02		4		8		14		15		43.2	19
8,113	13.8	(1)	23.2	(1)	38.6	(2)	55.6	(3)	48	(2)	96.6	(4)	26.6	(1)		
Roselawn	62.01		62.02		110										44.1	20
9,704	51	(2)	---	---	37.2	(2)										
Lower Price Hill	91														45.0	21
758	45	(2)														
West Price Hill	97		98		99.01		99.02		107						53.4	22
19,570	36	(2)	24.4	(1)	71.8	(3)	51.6	(2)	83	(4)						
Corryville	32		33												54.5	23
3,072	60.4	(3)	48.6	(2)												
Mt. Auburn	18		22		23										55.4	24
5,257	78.2	(4)	46.2	(2)	41.8	(2)										

Table 2A																
Neighborhood	Census Tract														SAS	
Neighborhood Population	Census Tract SES Index and (Quartile)														Index	Rank
QUARTILE 3																
Kennedy Heights	58														55.6	25
6,262	55.6	(3)														
University Heights	29		30												56.5	26
8,144	52.6	(2)	60.4	(3)												
Fairview - Clifton	25		26		27										57.3	27
7,832	63.2	(3)	48.6	(2)	60	(3)										
Westwood	88		100		100		101		102.1		102.2		109		58.3	28
37,261	24.6	(1)	51.6	(2)	42	(2)	80.4	(4)	74.2	(3)	77.2	(4)	57.8	(3)		
Northside	74		75		78		79								61.2	29
8,376	44.8	(2)	67.2	(3)	64.4	(3)	68.4	(3)								
Madisonville	55		56		108										62.3	30
11,519	61	(3)	74.8	(3)	51.2	(2)										
Evanston - E. Walnut Hills	41														65.6	31
1,814	65.6	(3)														
Hartwell	60														66.4	32
5,416	66.4	(3)														
College Hill	81		82.01		82.02		84		111						66.4	33
16,949	65.6	(3)	69.4	(3)	57	(3)	64.8	(3)	75.4	(3)						
N. Avondale - Paddock Hills	65														75.0	34
8,746	75	(3)														
CBD - Riverfront	6		7												75.7	35
3,793	80.4	(4)	71	(3)												

TABLE 2A																
Neighborhood	Census Tract														SAS	
Neighborhood Population	Census Tract SES Index and (Quartile)														Index	Rank
QUARTILE 4																
Oakley	52		53		54										76.3	36
13,245	90.2	(4)	85.2	(4)	53.6	(2)										
Sayler Park	105		106												76.5	37
3,747	65.6	(3)	87.4	(4)												
East End	43		44												77.4	38
1,728	103	(1)	51.8	(2)												
Mt. Washington	46.01		46.02		46.03										82.4	39
15,669	75.8	(4)	87.8	(4)	83.6	(4)										
Pleasant Ridge	57.01		57.02		59										84.5	40
9,451	82.8	(4)	75.8	(4)	95	(4)										
East Walnut Hills	20		42												84.8	41
3,617	81.2	(4)	88.4	(4)												
Clifton	70		71		72										87.7	42
8,734	80	(4)	97.4	(4)	85.6	(4)										
California	45														91.6	43
1,285	91.6	(4)														
Mt. Adams	12		13												94.7	44
1,937	94.6	(4)	94.8	(4)												
Mt. Lookout - Columbia Tusculum	47.01														98.2	45
3,133	98.2	(4)														
Hyde Park	49		50		51										101.2	46
15,491	101.6	(4)	101.4	(4)	100.6	(4)										
Mt. Lookout	48														102.6	47
4,117	102.6	(4)														

Social Areas of Cincinnati

moved up to SES III. In Evanston, Tract 38 moved up to SES II from SES I. Avondale tracts had no change either way in SES designation. Overall, recent changes in SES II reflect decline on the west and (excepting Roselawn and Bond Hill) positive change on the East.

> The area in $2005-2009$ was poorer, less African American and the two parent family structure was eroding but at a slower rate than in previous decades.

With a median family income of only $\$ 39,449$, most families in SES II struggle to make ends meet. In 1970, 15 percent of the households had incomes below the poverty level. This rose to 18 percent in 1980, 24 percent in 1990, 24 percent in 2000 and to 29.7% in 2005-2009. In 1970, SES II was 41 percent African American. In 2005-2009 this percentage was 54%, down from 80% in 2000. In 197038 percent of Cincinnati's African Americans lived in SES II. This fell to 36 percent in $1980,29 \%$ in 2000 and in 2005-2009 fell further to 27%. The number of families decreased from 27,117 in 1970 to 14,181 in 2005-2009. The family structure indicator was 73.5 in 1970 and fell to 32.5 in 2005-2009. The area in 2005-2009 was poorer, less African American and the two parent family structure was eroding but at a slower rate than in previous decades.

Social I ndicator Changes

Although there is great variation in income and education from home to home, the overall texture of SES II is that of a working class neighborhood. While the 2005-2009 poverty rate in Over-the-Rhine was 61.7%, in Linwood it was only 9.4%. The unemployment rate in the second quartile varied from 7 in Winton Place to 37 in Lower Price Hill.

Although social workers and educators regard it as a high problem area, the neighborhoods in SES II have their strengths. Many of the census tracts, for example, have, in 2005-2009, less than seventeen percent of their population in poverty and an overcrowding indicator of less than four percent. They are neighborhoods
where there are heavy concentrations of families struggling to rise above the poverty they once knew. This is an assumption based on our interpretation of recent Cincinnati history. The data of this report lend credence to the assumption. SES II is an area where most of the housing is multi-family; many of these homes have been converted from single-family use. (A considerable number, of course, are still owner occupied.) Seven workers in ten are blue collar or service workers. Over 20 percent of the population above 25 years of age has less than a 12 th grade education.

Even though almost one in three (29.7 percent) of the households in SES II were below the poverty level in 2005-2009 (compared to 24 percent in 1990), community services are usually not as well developed in SES II areas as they are in SES I. Comprehensive community service centers are needed, but are not present in such areas as Carthage, Madisonville, Northside, Sedamsville, or Avondale. Such citywide services as the Department of Jobs and Family Services are trying to become more comprehensive in order to treat the whole range of individual and family problems. They remain centralized and bureaucratic. Individuals from SES II and further outlying areas may be physically and psychologically removed from contact with social services except in cases of extreme necessity. There may be a need for service centers within these neighborhoods(5).

It should be noted that thinking is shifting in some circles from a service provision model to an asset building model of community development. Xavier University and United Way have funded the Community Building Institute to promote the new model. Therefore recommendations about providing more services should be reconsidered in that light. Asset based community redevelopment involves an emphasis on organizing neighborhood residents to utilize their personal, associational, and institutional assets to rebuild the economic and social fabric. Community development efforts such as Price Hill Will and Place Matters Initiative of United Way are responding to neighborhood decline in SES II areas.

TABLE 2B

CITY OF CINCINNATI SUMMARY STATISTICS FOR SES QUARTILES, 1970 TO 2005-2009

		Quartile I	Quartile II	Quartile III	Quartile IV
Total Population	1970	86,549	116,935	95,902	155,481
	1980	71,824	89,799	111,612	116,682
	1990	78,141	98,954	94,269	92,132
	2000	64,284	81,339	96,066	96,059
	2005-2009	70,425	71,175	116,112	82,154
Total Families	1970	18,712	27,117	22,982	41,132
	1980	6,229	20,434	26,420	29,235
	1990	17,895	23,250	20,720	21,506
	2000	14,336	17,811	21,550	21,307
	2005-2009	14,451	14,181	22,608	17,243
Total Housing Units	1970	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1980	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1990	35,688	43,736	43,347	46,244
	2000	32,472	39,711	46,549	50,292
	2005-2009	36,599	39,316	58,146	43,973
Percent Single Family Units	1970	15\%	28\%	40\%	46\%
	1980	19\%	31\%	41\%	47\%
	1990	22\%	37\%	41\%	42\%
	2000	16\%	38\%	45\%	42\%
	2005-2009	39.3\%	39.8\%	44.2\%	51.6\%
Total African American Population	1970	47,602	47,943	15,440	13,993
	1980	42,376	46,695	21,206	19,252
	1990	59,632	42,212	25,040	11,037
	2000	51,774	40,601	36,720	12,896
	2005-2009	42,545	38,459	49,467	8,701
Percent African American Population	1970	55\%	41\%	16\%	9\%
	1980	59\%	52\%	19\%	16\%
	1990	76\%	43\%	27\%	12\%
	2000	81\%	80\%	38\%	13\%
	2005-2009	60.4\%	54.0\%	42.6\%	10.6\%
Percent White or Other	1970	40\%	53\%	84\%	74\%
	1980	39\%	48\%	79\%	82\%
	1990	24\%	57\%	73\%	88\%
	2000	20\%	80\%	62\%	87\%
	2005-2009	39.6\%	46.0\%	57.4\%	89.4\%
Percent First Generation Immigrants	1970	3\%	6\%	9\%	15\%
	1980	------ ${ }^{1}$	------ ${ }^{1}$	------- ${ }^{1}$	------ ${ }^{1}$
	1990	1\%	2\%	4\%	4\%
	2000	1\%	3\%	5\%	4\%
	2005-2009	3.0\%	2.8\%	5.1\%	4.5\%

Table 2b
CITY OF CINCINNATI SUMMARY STATISTICS FOR SES QUARTILES, 1970 TO 2005-2009

		Quartile I	Quartile II	Quartile III	Quartile IV
Total Households Below Poverty	1970	6,423	4,063	1,790	1,696
	1980	7,176	3,761	2,213	1,454
	1990	16,072	9,423	5,868	3,637
	2000	11,745	8,387	6,109	4,198
	2005-2009	10,226	8,392	9,959	4,852
Percent of Households Below Poverty	1970	34\%	15\%	8\%	4\%
	1980	44\%	18\%	8\%	5\%
	1990	53\%	24\%	14\%	8\%
	2000	45\%	24\%	14\%	9\%
	2005-2009	37.2\%	29.7\%	20.5\%	12.4\%
Total Households on Public Assistance	1970	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1980	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1990	11,382	6,053	2,847	1,807
	2000	3,794	1,941	1,193	761
	2005-2009	2,590	1,235	1,495	602
Public Assistance/Poverty Ratio	1970	------- ${ }^{1}$	------- ${ }^{1}$	-------1	-------1
	1980	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1990	71\%	64\%	49\%	50\%
	2000	32\%	23\%	20\%	18\%
	2005-2009	25\%	15\%	15\%	12\%
Total Population 60 Years or Older	1970	13,346	20,686	15,930	31,075
	1980	10,432	15,186	19,200	27,212
	1990	11,082	16,829	18,743	18,674
	2000	8,043	10,508	16,997	17,323
	2005-2009	9,543	10,477	18,052	15,741
Percent 60 Years or Older	1970	15\%	18\%	17\%	20\%
	1980	15\%	17\%	17\%	23\%
	1990	14\%	17\%	20\%	20\%
	2000	13\%	13\%	18\%	18\%
	2005-2009	14\%	15\%	16\%	19\%
Total Population Under 16 Years	1970	------ ${ }^{1}$	-------1	------ ${ }^{1}$	------ ${ }^{1}$
	1980	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1990	26,367	24,664	16,511	15,446
	2000	20,889	19,343	19,134	15,516
	2005-2009	20,034	14,910	19,109	13,111
Percent Population Under 16 Years	1970	-------1	------ ${ }^{1}$	-------1	-------1
	1980	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$

Table 2b
CITY OF CINCINNATI SUMMARY STATISTICS FOR SES QUARTILES, 1970 TO 2005-2009

		Quartile I	Quartile II	Quartile III	Quartile IV
	1990	34\%	25\%	18\%	17\%
	2000	33\%	24\%	20\%	16\%
	2005-2009	28\%	21\%	16\%	16\%
Total Unemployed	1970	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1980	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1990	4,091	4,299	2,592	1,745
	2000	4,090	3,130	3,033	1,772
	2005-2009	4,781	4,049	5,999	2,247
Unemployment Rate	1970	9\%	6\%	4\%	3\%
	1980	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$	------ ${ }^{1}$
	1990	20\%	9\%	5\%	3\%
	2000	18\%	8\%	6\%	3\%
	2005-2009	16\%	12\%	10\%	5\%
${ }^{1}$ Data not available					

TABLE 2C

CITY OF CINCINNATI AVERAGE SES INDICATORS BY QUARTILE, 1970-2005-2009

SES Indicator / Index		Quartile I	Quartile II	Quartile III	Quartile IV
Family Income Indicator	1970	\$5,147	\$7,444	\$8,944	\$11,482
	1980	\$8,110	\$13,231	\$18,641	\$22,946
	1990	\$11,398	\$22,568	\$30,913	\$44,779
	2000	\$17,487	\$30,190	\$41,848	\$73,723
	2005-2009	\$28,259	\$39,448	\$48,937	\$93,417
Family Structure Indicator	1970	71.4\%	73.5\%	80.3\%	83.1\%
	1980	38.5\%	59.0\%	76.3\%	79.7\%
	1990	27.3\%	50.5\%	69.4\%	82.0\%
	2000	17.0\%	34.7\%	50.3\%	75.4\%
	2005-2009	22.9\%	32.5\%	48.9\%	69.0\%
Occupation Indicator	1970	47.5\%	38.1\%	29.2\%	18.6\%
	1980	72.0\%	56.3\%	43.9\%	30.5\%
	1990	86.9\%	79.8\%	71.8\%	57.3\%
	2000	83.6\%	74.3\%	65.2\%	48.9\%
	2005-2009	77.3\%	72.2\%	66.8\%	46.4\%
Education Indicator	1970	82.0\%	68.4\%	54.1\%	37.6\%
	1980	70.6\%	53.5\%	38.3\%	24.3\%
	1990	52.9\%	38.5\%	24.7\%	14.6\%
	2000	45.4\%	30.3\%	19.0\%	11.4\%
	2005-2009	31.1\%	22.4\%	16.1\%	6.8\%
Crowding Indicator	1970	19.4\%	11.8\%	8.7\%	3.3\%
	1980	11.7\%	6.2\%	3.5\%	1.5\%
	1990	9.7\%	4.1\%	2.1\%	0.9\%
	2000	6.2\%	4.3\%	2.2\%	0.8\%
	2005-2009	3.8\%	1.9\%	1.7\%	0.3\%
SES Index	1970	24.1	48.9	74.2	90.0
	1980	17.2	42.0	68.9	93.3
	1990	22.8	50.6	77.0	100.7
	2000	21.5	44.5	69.8	96.6
	2005-2009	31.1	45.7	62.4	86.8

	City Totals					Percent Change				
	1970	1980	1990	2000	2005-2009	1970-1980	1980-1990	1990-2000	2000-2009	1970-2009
Total Population	452,524	385,457	364,040	338,669	340,210	-14.8\%	-5.6\%	-9.2\%	0.5\%	-24.8\%
Number of Families	109,383	91,315	83,399	72,833	68,483	-16.5\%	-8.7\%	-12.7\%	-6.0\%	-37.4\%
Percent African American of Total Population	27.6\%	33.9\%	37.9\%	42.8\%	41.0\%	22.5\%	12.1\%	12.9\%	-4.3\%	48.5\%
Number of African American Individiuals	125,070	130,490	138,110	143,070	139,401	4.3\%	5.8\%	2.5\%	-2.6\%	11.5\%
Percent of Families Below Poverty	12.8\%	16.0\%	20.7\%	18.2\%	20.1\%	25.0\%	29.4\%	-12.3\%	10.5\%	57.1\%
Total Families Below Poverty	13,978	14,588	17,235	13,227	13,772	4.4\%	18.1\%	-23.3\%	4.1\%	-1.5\%
Percent of Persons 60+ Years of Age	17.9\%	19.1\%	18.0\%	12.7\%	15.8\%	6.7\%	-5.8\%	-29.6\%	24.5\%	-11.6\%
Total Number of Persons 60+ Years of Age	81,007	73,531	65,417	41,900	53,813	-9.2\%	-11.0\%	-35.9\%	28.4\%	-33.6\%

Social Areas of Cincinnati

As was noted in the First Edition study(3), SES II is characterized by low education levels, high rates of poverty, single parent homes, unemployment and inadequate family income. The 2005-2009 ACS data show school dropout rates range from zero in Mt. Airy, Winton Place and Corryville to 64% in Lower Price Hill. A community survey or review of crime statistics would probably show wide-scale delinquent or pre-delinquent behavior on the part of thousands of 16-25 year olds out of school and unemployed in this area. Neighborhood stabilization requires that schools, religious institutions and social agencies in the communities, backed by neighborhood organizations and area-wide resources, mobilize effective youth and family support services. This approach fits the asset building philosophy.

SES III: Where Front Yards Begin

The Social Area Described

The third quartile areas of Cincinnati, (shown in medium red on Figure 2) are comprised of College Hill, North Avondale, Kennedy Heights, University Heights, parts of Mt. Auburn, Corryville, Sayler Park, Northside, Hartwell, Fairview, Westwood, West Price Hill, Oakley, Madisonville, Evanston, Walnut Hills, the CBD and three newly added tracts in Over-the-Rhine and the West End. If the city can be looked at as a geographic area in which successive waves of foreign or rural-to-urban migrants settle, develop ethnic communities and move on, then SES III could be called stage three.

Intuitively this makes some sense. The writer knows of one Irish family in which one generation was born in the East End, the next in Mount Adams and the third in West Price Hill. Some of the current generation live in Landen. Yet it would be an oversimplification to classify all of SES III thusly. Such an explanation might say a lot about the Germans and Irish in, for example, Price Hill and Northside, but it does not apply to University Heights-which houses successive generations of students and faculty of the University of Cincinnati; or to tract 19 in Walnut Hills, which has become a community of childless professionals. Tract 7
in the Central Business District once had lowincome elderly pensioners as well as luxury apartment dwellers.
SES III can be characterized as a series of middle class enclaves which border SES II or SES I areas on their central perimeter. About 44 percent of the residences are single family and many census tracts have large open space areas.

The 2005-2009 population is 57.4 percent white or other and 42.6 percent African American. About five percent of the population is first or second generation foreign born (ethnicity indicator). Median family income is $\$ 48,937$ and 66.8 percent of the workers were in blue collar

> SES II is characterized by low education levels, high rates of poverty, single parent homes, unemployment and inadequate family income.
or service jobs. On the other side of the coin, 9,959 SES III households are below the poverty line and 16 percent of the population over 25 years of age has less than a 12 th grade education.

SES III is not a fortified middle-class sanctuary. In 1970, 14 of the 23 census tracts in this area were at least 90 percent white and eight were at least 99 percent white. By 2000, the area had become much more integrated and included integrated neighborhoods such as Corryville, East Price Hill, and Madisonville. Seven neighborhoods that have at least one tract in SES III also have tracts in SES II and Evanston, Westwood, and Walnut Hills also have one SES I tract. SES III is generally not separated from the lower SES areas by physical barriers such as expressways, parks or steep hillsides.

An examination of the base map (Figure 2) shows the accuracy of this analysis. Evanston, Walnut Hills, and Avondale, for example, are contiguous to higher income areas. As to the feasibility of upgrading various neighborhoods, the Urban Development Department has pub-
lished an analysis entitled "From Urban Renewal to Community Development" which provides an analysis of the requirements to improve housing conditions in several neighborhoods. The City of Cincinnati has developed a housing strategy that

SES III can be characterized as a series of middle class enclaves

 would promote both integration and neighborhood stability.The future of SES III is intimately tied to Cincinnati's success or failure in providing social services, good schools, and physical development programs for the contiguous low-income areas. Residents of SES III are generally aware of this connection and of their need to act positively to solve the problems that affect their own and nearby neighborhoods.

SES I V: The Upper Quartile The Social Area Described

The fourth quartile (indicated by darkest red in Figure 2) includes the neighborhoods of Mount Lookout, Hyde Park, Pleasant Ridge, Mount Adams, California, Mount Washington, Mount Lookout-Columbia Tusculum, Clifton, East Walnut Hills and tracts in CBD, Sayler Park, Oakley, Westwood, West End, West Price Hill, Mount Auburn and East End. The new SES IV areas are in Sayler Park, Hartwell, the Liberty Hill section of Mount Auburn, the Riverside Drive part of the East End, and Tract 14 of the West End. Tract 111 in College Hill and 102.01 in West Price Hill moved down to SES III. Just as SES I has moved somewhat to the west, SES IV is expanding on the east and in the area north of Central Parkway. In several instances, these areas are contiguous to SES I or SES II areas. Just as often, they are "buffered" from lower SES areas by parks, hillsides, cemeteries, or other open space areas.
Trends in SES IV since 1970 include the fact that today's SES IV has 73,327 fewer people. It is the only social area to continuously lose population. Today's SES IV is slightly more integrated than the counterpart area in 1970. The percentage of single family dwellings has risen from 46 to 51.6 percent. Its immigrant
population fell from 15 (Table 2b) percent in 1970 to 4.5 percent in $2005-2009$. The percent of households below the poverty level rose to 12.4 percent. Almost two thousand households were on public assistance in 1990. This fell to 602 in 2005-2009. Its elderly population fell to 19 percent, but was a higher proportion of elderly than any area except SES III. Its youth population (under 16) was 16 percent, which is lower than the other social areas. Its unemployment rate was 5 percent compared to 3 percent in 1970. Median family income was a hefty $\$ 93,417$, eight times that of 1970 . SES I, by comparison, saw its median family income increased by less than six times to $\$ 28,259$ in the same time period. As clearly as any statistic can, this illustrates the growing gap between the haves and have-nots in Cincinnati.

In 1970 the median family income ratio between SES I and SES IV was 2.23. In 2005-2009 it was 3.31. This "inequality index" for Cincinnati did not quite double in four decades. At the metropolitan area level the gap was even wider. The median income in SES I is well below the poverty level. In SES IV the poverty rate for families ranges from 2.5 percent in Hyde Park to 5.5 percent in East Walnut Hills. The overall SES IV poverty rate was 12.4 percent (of households). The Family Structure Indicator declined from 83.1 percent in 1970 to 69 percent in 2005-2009. As with all the social areas, the Occupation Indicator increased dramatically until 1990 then dropped somewhat (Table 2c). The Education Indicator decreased in all four social areas as well. By 2005-2009, only 6.8 percent of SES IV's population over age 25 had less than a 12 th grade education, down from 37.6 percent in 1970. Overcrowding has been reduced to a mere 1.7 percent.
Presumably most of the families in SES IV can provide for their housing, social services, and health needs through the use of private resources. Community issues in these areas center around preserving the existing character of their neighborhoods and improving the quality of public education. The issue of the quality of public schools (more than any other issue) brings SES IV people into dialogue with other neighborhoods. There are other problems

Social Areas of Cincinnati

which also cut across class lines. Drug abuse and mental health also pose problems which call for public intervention, as do law enforcement and the provision of utilities, parks, public transportation, and services for the elderly. It should also be noted that the poverty rate grew by one third in SES IV in the past decade.

Patterns of Concentration and Dispersal

It has been noted that most of the buildings in SES I are multi-family although overcrowding has greatly declined. It is possible to be more specific and describe three different patterns of high density multi-family neighborhoods.

1. Public Housing

In 1970 Cincinnati had 7,184 rental public housing units occupied by some 20,000 individuals. Of these units, 5,821 were located in SES I. By definition, occupants of public housing are low or moderate-income families or elderly or disabled individuals. The concentration

As clearly as any statistic can, this illustrates the growing gap between the haves and have-nots
 in Cincinnati.

of public housing units in the West End and along the hillsides west of Mill Creek poses special problems for community residents and for those responsible for the planning and delivery of services in these areas.

One limitation of using overcrowding as a housing indicator is that it does not point to public housing as a "housing problems". Since public housing regulations do not permit "overcrowding," neighborhoods with large public housing projects are not always the most overcrowded even though sections of the tract may be very overcrowded. The five most overcrowded census tracts are in North Fairmount, Lower Price Hill, South Cumminsville, Winton Hills, and Madisonville.

Chapter 2 | The Social Areas of Cincinnati

2. High Density Private Housing and Section 8 Units

Over-the-Rhine, Mount Auburn, and Lower Price Hill, for example, have areas of high density, low-income housing which is privately owned. The existence of large rent supplement rehabilitation projects in these neighborhoods should, however, receive special analysis. Also, in interpreting the data for a particular tract or neighborhood, it is important to note the existence of high rises and large apartment complexes.

3. Overcrowded Housing in a Dispersed Setting

Columbia-East End and Riverside Sedamsville provide a different pattern of a low-income population dispersed in narrow "string town" fashion along the river. This pattern poses special problems of transportation and communication which have been a perennial headache for planners and organizers in the East End. Note: Since this was written for the first edition in 1974, part of the East End has gone upscale and overcrowding is no longer a major issue in most neighborhoods.
The preceding discussion illustrates that for any specific planning purpose, knowing the SES typology is only a starting place toward neighborhood need definition. New strategies must be developed to link these neighborhoods, spread east and west along the Ohio River, with the rest of the city.

The Target Area Concept for Social Welfare Programs

One possible use of this report is in helping develop "target neighborhood" definitions for various social programs. SES I is considered a critical area for many programs on the basis of data presented in this report. However, this report needs to be supplemented with specific data from the area of intervention proposed. For example, health, mental health and crime and delinquency rates could be mapped out on a census tract basis. Since so many social indicators are highly correlated with social class, chances are that the highest rates would occur in SES I. However, it is possible that for some intervention programs census tract map-
ping would indicate at least partial inclusion of some of the other SES areas, especially SES II, which tend to be neglected. Certainly the data indicate that programs aimed at the problem of family stability or "broken homes" should not be concentrated in any one area of the city.

Problems of the Target Area Approach

A. "Poor Services"

One of the standard criticisms of the practice of creating special programs for people most in need is that such programs for the poor also turn out to be "poor services" and constantly suffer from lack of community support, funding and accountability. The other side of the dilemma is that when resources are scarce it seems only fitting to expend them where the need is greatest. The authors believe that the answer to this dilemma lies in providing certain essential services universally even if it means eliminating some of the present array of subsidies which, in fact, now favor the upper classes. But until there is a restructuring of national social policy it is important to be able to determine the areas of greatest need at the local level, and that is what this report does.

B. The Dispersed Poor

Because some antipoverty strategies have used the "target area" approach, to that degree the poor who live in more affluent neighborhoods are left to their own resources or to seek out private charitable organizations or city or county wide bureaucracies. In the absence of special outreach programs, the poor may never become aware that they are eligible for such services.

In 2005-2009, there were 4,736 families with incomes below the formal poverty level living in the higher income areas (SES III and IV). Table 2b show that 62.6 percent of the poor live outside SES I. Use of the target area approach should not blind us to the needs of those who live outside the high-risk areas. The assumption that it is worse to be poor in all of the social disorder of a "hard core" neighborhood is true, but there can be real human need anywhere in the city.

Refining and Updating Target Areas

In the first edition of this report, the author called for expanding the target area for the programs of the Community Action Commission based on the report's findings. In the second edition, attention was called to the needs of Linwood, Walnut Hills, Evanston, Madisonville, Northside and Westwood because of declining indicators in those areas. Appendix II is especially useful for noting these trends by census tract and by neighborhood. Tables 2e, $2 f$, and 2 g show the Cincinnati neighborhoods which experienced the greatest decline in the different decades.

The third edition (1996) pointed out the dramatic decline which Bond Hill, Avondale, Mt. Airy, Kennedy Heights, and Westwood had experienced since 1970. Between 1980 and 1990 the greatest declines were in Fay Apartments and Roselawn. Various agencies and citizen groups have used previous editions to justify the location of community centers and other programs. These include a senior center in Hyde Park and a recreation center in East Price Hill. Per-

> In 2005-2009, there were 4,736 families with incomes below the formal poverty level living in the higher income areas (SES III and IV).
haps the most dramatic use of the Third Edition was by the civic leaders who successfully advocated for the establishment of a federally funded Empowerment Zone in Cincinnati. The Fourth Edition noted dramatic decline in Mt. Airy and the Fifth Edition points to the decline in Riverside-Sayler Park. Hospitals, university programs, schools, and social agencies have used this report data extensively in proposals seeking funding for a great variety of health, education, and human service programs.

Social Areas of Cincinnati

TABLE 2E Neighborhoods That Declined 10 SES Points Or More, 1970-1980	
Neighborhood	Decline
Bond Hill	-28.8
CBD - Riverfront	-23.8
Kennedy Heights	-20.6
Avondale	-20.4
North Avondale - Paddock Hills	-19.4
College Hill	-18.7
South Cumminsville - Millvale	-16.2
Mt. Airy	-13.7
Hartwell	-13.4
Winton Hills	-13.4
Evanston	-13.1
Over-the-Rhine	-12.4
Northside	-12.0
Carthage	-10.9
Walnut Hills	-10.8
Madisonville	-10.3

TABLE 2F-1 NEIGHBORHOODS THAT ExpERIENCED THE GREATEST SES DECLINE, 1970-1990 Neighborhood	
Bond Hill	Decline
Mt. Airy	-31.9
Avondale	-26.7
Kennedy Heights	-21.5
East Price Hill	-21.0
S. Cumminsville - Millvale	-15.0
Westwood	-14.2
College Hill	-14.0
Mt. Washington	-13.2
Fay Apartments	-12.4
Roselawn	-12.3
North Avondale - Paddock Hills	-11.4
Winton Hills	-10.2

Chapter 2 | The Social Areas of Cincinnati

TABLE 2F-2 NEIGHBORHOODS ThAt Experienced the Greatest SES DECLINE, 1980-1990	
Neighborhood	Decline
Fay Apartments	-20.4
Roselawn	-15.1
Mt. Airy	-13.0
East Price Hill	-5.8
South Fairmount	-5.6
Westwood	-4.8
Mt. Washington	-3.7
North Fairmount-English Woods	-3.6
Sedamsville-Riverside	-3.2
Bond Hill	-3.1
Lower Price Hill	-3.0
University Heights	-3.0

TABLE 2G-1	
NEIGHBORHOODS THAT ExpERIENCED THE	
GREATEST SES DECLINE, 1990-2000	
Neighborhood	Decline
Sayler Park	-27.3
Mt. Airy	-17.7
Fairview - Clifton	-17.5
CBD - Riverfront	-14.8
North Avondale-Paddock Hills	-12.2
Westwood	-12.0
University Heights	-12.0
Hartwell	-11.9
College Hill	-11.8
Corryville	-11.4
Clifton	-11.3
Roselawn	-10.4
Winton Place	-10.0

Between 1990 and 2000 eleven neighborhoods experienced SES decline of ten points or more (Table 2 g). Six of these neighborhoods also show up in Table 2h as having experienced the greatest long term decline. These are Mt. Airy, North Avondale-Paddock Hills, Westwood, Hartwell, University Heights, and College Hill. At the top of the list for long term decline are Mt. Airy (44.4 points), Bond Hill (39.9), Westwood (26), and College Hill (25). Close behind are North Avondale-Paddock Hills (22.4), Rose-
lawn (21.8), Avondale (21.8), and East Price Hill (18.8). In the Fourth Edition, we reported that Bond Hill, Avondale, Kennedy Heights,

> Six of these neighborhoods also show up in Table 2 h as having experienced the greatest long term decline.

Mt. Washington, Fay Apartments, Northside, Roselawn, Winton Hills, East Price Hill and Pleasant Ridge could be taken off the critical list in that none of these neighborhoods, which had experienced long term decline, declined more than 10 points in the 1990-2000 period. Mt. Airy, Westwood, North Avondale-Paddock Hills, University Heights, and College Hill remained on the critical list as having experienced both long and recent decline. These are all second or third ring Cincinnati neighborhoods. Presumably inner city neighborhoods such as Over-the-Rhine, West End, and Lower Price Hill, already near the bottom of the SES scale, have nowhere to go but up. Many did experience gains on the SES Index during the decade. The results of community development efforts show up in dramatic gains in the East End.

Between 2000 and 2005-2009 Mt. Airy, Westwood, and Hartwell reappeared on the list of neighborhoods which declined more than ten points (Table 2g-2). Kennedy Heights and Roselawn which had been on this list prior to 1990-2000, reappeared with big losses. West Price

The results of community development efforts show up in dramatic gains in the East End. Hill appeared for the first time. Surprisingly, Mt. Adams, California, East Walnut Hills, Hartwell and Mt. Washington were added to this list in 20052009. Though their overall scores remain very high. Carthage lost 10.8 points. The SES decline for Westwood was 10 points, down from 12 points in the previous decade. The losses in
these neighborhoods will be explained in more detail in Chapter 9.

TABLE 2G-2	
NEIGHBORHOODS That DECLINED 10 SES	
PoINTS OR MORE, 2000 TO 2005-2009	
Neighborhood	Decline
Riverside - Sayler Park	-38.4
West Price Hill	-22.2
Kennedy Heights	-21.4
Roselawn	-20.2
Mt. Airy	-15.7
Mt. Adams	-15.2
California	-14.8
Hartwell	-11.6
Mt. Washington	-11.5
Winton Place	-10.8
Carthage	-10.8
East Walnut Hills	-10.8
Westwood	-10.0

Note that the neighborhoods which experienced rapid decline on the SES index are distributed through all four social areas. The tables in this section are based on neighborhood level data. Appendix III can be used to look at SES changes at the tract level. Block group data is also available on CD ROM for those who want to carry small area analysis even further.

Neighborhood leaders and planners of services should study these downward trends and, after determining whether they are artificial functions of boundary changes, plan appropriate service improvements or community renewal efforts.

From the data presented thus far, the authors conclude:

1. SES I should remain a high priority area for health and social service planning and for community development efforts. This area still includes the old core of Walnut Hills and Avondale on the east, the Basin Area north of the CBD, Winton Terrace, and a large and expanding area on the west side. Mount Airy and RiversideSayler Park are now "inner city" along with the entire front of the western plateau.
2. Demographic shifts and socioeconomic change

Social Areas of Cincinnati

can affect almost any area of the city. Examples of this include recent declines in Mount Airy and, to a smaller degree, Mount Washington.
3. The high-SES core from Mount Washington to the CBD is moving toward consolidation into one solid SES IV area. Liberty Hill (Mount Auburn tract) has joined this area as have noncontiguous areas in Over-the-Rhine and the West End.

> The high-SES core from Mount Washington to the CBD is moving toward consolidation into one solid SES IV area. Liberty Hill (Mount Auburn tract) has joined this area as have non-contiguous areas in Over-the-Rhine and the West End.
4. Poverty is much less concentrated in SES I and II than it was in 1970.
5. Racial isolation is less severe now than it was in 2000. SES III is now 42.6 African American and SES I and II have lower percentages African American than previously. This is a big reversal of previous trends.
6. The poverty rate went up in all social areas ex-
cept SES I where it fell from 45 to 37.2 percent. The core inner city since 1990 has continued to be less African American and somewhat less poor.
7. The welfare-poverty ratio has continued to decline since welfare reform was enacted in 1998. Now only 25 percent of households in poverty receive public assistance in SES I and even fewer in the other social areas.
8. The decline in the Family Structure Indicator has slowed. In SES I it has even reversed slightly (perhaps only due to a geographic shift). This is a remarkable shift in the city's demographic history. From 1970 to 2000 it declined in SES I from 71.4 to 17 and in SES IV from 83.1 to 75.4. In 2005-2009 it was 22.9 in SES I and 69.0 in SES IV (Table 2c). The 1990s saw huge declines in all four social areas. The Family Structure Indicator is 'the percentage of children under 18 living in two parent families.'

TABLE 2H
NEIGHBORHOODS THAT EXPERIENCED THE GREATEST DECLINE 1970 TO 2005-2009

Neighborhood	$\mathbf{1 9 7 0}$ Value	$\mathbf{2 0 0 5 - 2 0 0 9}$ Value	Difference
Mt. Airy	99.3	39.2	-60.1
Bond Hill	87.2	39.5	-47.7
Roselawn	86.1	44.1	-42.0
Kennedy Heights	93.4	55.6	-37.8
Westwood	94.3	58.3	-36.0
College Hill	100.7	66.4	-34.3
N. Avondale - Paddock Hills	106.4	75.0	-31.4
East Price Hill	56.8	29.0	-27.8
West Price Hill	79.4	53.4	-26.0
Mt. Washington	107.6	82.4	-25.2
Hartwell	89.2	66.4	-22.8
Avondale	52.8	32.4	-20.4
University Heights	76.0	56.5	-19.5
Riverside - Sayler Park	49.0	32.0	-17.0
S. Cumminsville - Millvale	27.4	11.6	-15.8

Chadter 3

The Census Tract Map Method

Another approach to small area analysis is simply to take available indicators and plot the indicators by quartiles on census tract maps. In one San Francisco study five independent map studies were made by various analysts, and an indicator was judged "useful" if it was found on at least four of the five studies to delineate "high risk areas." The assumptions involved were not elaborate and were based on "expert opinion", rather than extensive empirical analysis(1).

To further test this method, the data were subjected to a factor analysis. This is a mathematical treatment of correlation coefficients which results in grouping the indicators into a number of factors and constructs. Each factor accounts for a certain percentage of the variance between the indicators and is composed of all the indicators, with varying weights assigned to each indicator. The authors assumed that the factor with high loadings for the largest number of social indexes represent a factor of "high risk". The "high risk" factor in the San Francisco study accounted for 43.5 percent of the total variance, and no other factor accounted for more than 13 percent.

The results of the two methods were found to be mutually supporting in judging the "usefulness" of social indexes. Of the 29 indicators (health and social) nine were determined to be adequate in delineating the city, six social indexes (income, education, development, overcrowding, family status, and unwed parenting and three health indicators (prenatal care, prematurity and tuberculosis incidence).

This modification of the Shevky-Bell methodology and its application to problems of planning social services supported the earlier work. Its major limitation was its dependence on available published reports of the 1960 census(2).

In the following sections on education, joblessness, the elderly, and poverty and deprivation, we have applied the census tract map method in the strict sense of dividing the indicators into
quartiles. Figure 1 is a blank "do it yourself" map. The reader can do his or her own census tract map of, for example, unemployment, by using Table 8a. Simply rank the 119 tracts (using the standard procedure for handling ties) according to the unemployment rate (from the highest rate to the lowest rate). Then divide by four and color the map four different colors. The quartile with the highest rates is the 'highest risk" area for manpower planning.

In the following chapter, the last four US censuses and the 2005-2009 ACS data will be used to analyze trends in Cincinnati as they affect various elements of the population, especially African Americans and Appalachians. The emphasis is on these groups because they are large

```
The reader can do his or her own
census tract map of, for example,
unemployment, by using Table 8a.
```

components of the population and, in many respects, the future of the city and metropolitan area are tied to their welfare. Reference is also made to Hispanics, women, poverty, the elderly and children.

Neighborhood Classifications

In the second edition of this study (1986) one of the unique features was a classification of neighborhoods as African American, white, or Appalachian. In the current edition references are made to these three categories with somewhat different criteria. The median number of the particular indicator is used. The neighborhoods are classified if the indicator is more than this median number. For example, in Figure 5 neighborhoods are considered African American if the percent African American population is above the tract median of 46 percent.

Classification of an Appalachian neighborhood used different criteria. A neighborhood is classified as Appalachian if it meets the criteria established in the 1986 edition as recently up-
dated by Christopher Auffrey. The criteria used includes poverty indicators, racial composition, adult education levels, school dropout rates, teen jobless rates, occupation, family size, and the expert opinions of social agency staff and community residents in the affected areas. Table 5c (in Chapter 5) is a list of census tracts and neighborhoods. Nine neighborhoods were classified as Appalachian in 1986. There are now parts of ten neighborhoods on this list. Even though the criteria used to define Appalachian enclaves are essentially negative and circular there is a broad consensus that they do accurately identify Appalachian population concentrations. One reason these criteria work is that most white collar and professional Appalachians do not cluster together in definable neighborhoods. Another is that low formal education levels, teen joblessness, etc., are still a reality of life in urban Appalachian blue collar areas.

Chapter 4

Poverty, Race and Gender in Cincinnati

The concepts of race and ethnicity as used in the decennial census present some complex issues. For example, separate questions are asked about whether a respondent is African American and whether a respondent is Hispanic. This means one can be enumerated as both African American and Hispanic. Moreover, the 2000 census for the first time offered respondents the option of listing more than one race. This means, for instance, one could be multiracial (e.g., white and black) as well as Hispanic.

For the purposes of this report, we have defined as African American all non-Hispanic respondents to the 2005-2009 American Community Survey who listed themselves as being of one race, black. We have done this to maintain comparability with the previous editions of the Social Areas Report, and to avoid confounding ethnicity with race. This is not just a pragmatic decision, however. The social science literature indicates that within American society, multiracial people tend to adapt to the general white population to the extent they are able, while Spanish-speaking blacks do not readily assimilate into the resident African American population.

Poverty in Cincinnati

In 2005-2009, the median percent of Cincinnati families in each census tract with incomes below poverty level was 20.1 percent. The median income for Cincinnati families was \$51,670 (city tracts mean). Figure 3 shows tracts that have poverty rates higher than the tract average of 23 percent (gray areas) and incomes below the median incomes (striped areas).
Most of these income indicators overlap. However, there are five areas on the map that are striped but not shaded. These five tracts have

> In 2005-2009, the median percent of Cincinnati families in each census
> tract with incomes below poverty level was 20.1 percent.
family incomes below the overall city median, but do not have high percentages of families below poverty. Two tracts (26 and 32) have high percentages of college students. The other three are blue collar Appalachian (61) and African American (41 and 63) sections. Table 4a reveals the numbers behind the map in figure 3 .

Women and Poverty

Figure 4 illustrates the relationship between poverty and female headed households in Cincinnati census tracts. Note that the relationship between poverty and female-headed households is not consistent. Several predominantly Appalachian areas and the three tracts in the University of Cincinnati area have high poverty rates but not high percentages of female headed households. Other areas, some heavily African American, have high percentages of female headed households but not high rates of poverty. Excluding the atypical area around the Univer-

$$
\begin{aligned}
& \text { Looking at all } 48 \\
& \text { neighborhoods, in } \\
& 39 \text { neighborhoods } \\
& \text { the majority of } \\
& \text { these families with } \\
& \text { incomes below } \\
& \text { poverty are female } \\
& \text { headed. }
\end{aligned}
$$ sity, Figure 4 makes clear that even within the African American and Appalachian communities there are a variety of neighborhood patterns. Clearly, poverty and female headed households are not synonymous. Furthermore, there are several low income heavily white Appalachian areas in which traditional family structure is fairly intact. Table 4b provides the numbers and percentage of female headed households in poverty. Looking at all 48 neighborhoods, in 39 neighborhoods the majority of these families with incomes below poverty are female headed.

Cincinnati Neighborhood Approximation

$$
\begin{aligned}
& \text { 46. Sedamsvill - Riverside } \\
& \text { 47. Riverside - Sayler Park } \\
& \text { 48. Sayler Park }
\end{aligned}
$$

Figure 4
2005-2009 Cincinnati City Women and Areas of Poverty
Cincinnati Neighborhood Approximation

$$
\begin{aligned}
& \text { 45. Westwood } \\
& \text { 46. Sedamsville - Riverside } \\
& \text { 47. Riverside - Sayler Park }
\end{aligned}
$$

[^0]риәбәา
 \square Census tract boundary Female head of household $\square \nearrow>=40 \%$ (city tracts mean) Percent below poverty $\square<23 \%$
$\square>=23 \%$ (city tracts mean)
\square NA* $^{\square}$
00 Neighborhood number
00.00 Census tract number
Cincinnati Neighborhood Approximation

The largest concentrations of female headed households below poverty are:

1. East Price Hill 884
2. Avondale 864
3. Westwood 836
4. West End 759
5. Winton Hills 740
6. West Price Hill 577
7. College Hill 555
8. South Cumminsville-Millvale 395
9. Over-the-Rhine 371
10. Mt. Airy 356
11. Fay Apartments 313

Notably Over-the-Rhine is no longer high on this list. It is also notable that much of this poverty concentration is now on the West Side.

Poverty and Race

Figure 5 illustrates the relationship between poverty and race. The two types of shading show that while the heart of Cincinnati's African American core area is also an area of high poverty, there are numerous tracts in which there are more than the median number of African Americans but poverty rates are not above average. Excluding the University area (Tracts $26,27,29$, and 30 and Tract 4) poor white areas are shown in the gray unstriped areas. These tracts are heavily Appalachian.

African American Middle Class Neighborhoods

After viewing the 1990 census we were able to write that,

One of the more dramatic and hopeful findings of this report is that the neighborhoods which have become home to the vast majority of Cincinnati's African American middle class have reversed a long trend of declining social indicators and are either stable or improving (Table 4c and Table 9).

Avondale, College Hill, Evanston, Kennedy Heights, Bond Hill, and Madisonville are beginning to stabilize after two decades of decline." Walnut Hills and Mt. Auburn have not only reversed their pattern of decline but, as of 1990, were improving. North Avondale-Paddock Hills,
an SES IV neighborhood, not only reversed its pattern of decline, it also stabilized in terms of racial change (Table 4e).
This picture changed somewhat with the 2000 census. Avondale, Kennedy Heights, and Madisonville continued to improve on the SES scale (Table 9). Mt. Auburn and Evanston experienced a fractional decline that is not statistically significant. Bond Hill, College Hill, and North Avondale-Paddock Hills experienced decline of 8,12 and 12 points respectively. A review of the tract level components of change in Appendix II

> Declines in family structure and housing conditions seemed to be major components of change but there was great variety from tract to tract. revealed no obvious pattern. Declines in family structure and housing conditions seemed to be major components of change but there was great variety from tract to tract.

Between 2000 and 2005-2009 there was virtually no change in SES score for Avondale and Evanston. Mt. Auburn gained by 8.5 points (Table 9). College Hill declined for the second decade in a row (by 9.3 points) North Avondale-Paddock Hills by 9 points and Roselawn by 20 points. Kennedy Heights' SES score fell by 21.4, the third steepest decline among the 48 neighborhoods. The biggest decline in Kennedy Heights was caused by the failure of median family income to grow significantly compared to other neighborhoods. It appears that the gains made in the 1980-90 decade for some of these neighborhoods have not been sustained. Outmigration and the national and local economy are possible factors.

Table 4A Cincinnati Neighborhoods: Median Family Incomes and Families Below Poverty, 2005- 2009			
Neighborhood	Median Family Income ${ }^{\text {a }}$	Percent of Families Below Poverty Level	Total Families Below Poverty Level
1st Quartile			
S. Cumminsville - Millvale	\$15,465	56.9\%	421
Fay Apartments	\$9,808	71.5\%	371
East Price Hill	\$32,508	31.4\%	1,201
Winton Hills	\$10,167	66.4\%	753
Camp Washington	\$30,465	16.7\%	35
Riverside - Sayler Park	\$32,250	26.9\%	95
Avondale	\$25,854	37.5\%	985
Walnut Hills	\$28,091	34.5\%	390
Sedamsville - Riverside	\$25,727	38.9\%	167
N. Fairmount - English Woods	\$32,353	27.7\%	187
S. Fairmount	\$31,538	38.3\%	249
Mt. Airy	\$34,949	21.3\%	458
2nd Quartile			
Bond Hill	\$32,447	17.8\%	281
Over-the-Rhine	\$10,522	61.7\%	539
Linwood	\$44,063	9.4\%	16
Winton Place	\$44,345	28.7\%	163
Carthage	\$39,669	24.7\%	144
Evanston	\$30,764	21.2\%	344
West End	\$16,606	48.8\%	839
Roselawn	\$41,765	23.2\%	348
Lower Price Hill	\$20,568	48.4\%	75
West Price Hill	\$47,347	15.7\%	679
Corryville	\$28,400	34.8\%	119
Mt. Auburn	\$43,438	23.7\%	177
3rd Quartile			
Kennedy Heights	\$49,656	11.1\%	157
University Heights	\$44,655	23.8\%	212
Fairview - Clifton	\$31,187	23.9\%	196
Westwood	\$47,048	16.1\%	1,305
Northside	\$51,018	13.5\%	228
Madisonville	\$54,054	11.9\%	323
Evanston - E. Walnut Hills	\$42,083	28.7\%	87
Hartwell	\$54,844	14.6\%	158
College Hill	\$56,540	17.3\%	704
N. Avondale - Paddock Hills	\$59,268	10.2\%	131
CBD - Riverfront	\$56,613	0.0\%	0

TABLE 4A
CINCINNATI NEIGHBORHOODS: MEDIAN FAMILY INCOMES AND FAMILIES BELOW POVERTY, 20052009

Neighborhood	Median Family Income ${ }^{\text {a }}$	Percent of Families Below Poverty Level	Total Families Below Poverty Level
4th Quartile			
Oakley	\$81,911	8.4\%	173
Sayler Park	\$68,879	7.2\%	53
East End	\$54,211	14.7\%	51
Mt. Washington	\$66,195	10.2\%	387
Pleasant Ridge	\$62,791	12.8\%	301
East Walnut Hills	\$79,167	5.5\%	38
Clifton	\$90,369	8.1\%	137
California	\$156,098	0.0\%	0
Mt. Adams	\$108,475	0.0\%	0
Mt. Lookout - Columbia Tusculum	\$118,275	1.1\%	8
Hyde Park	\$122,401	2.5\%	75
Mt. Lookout	\$168,966	1.2\%	12
${ }^{\text {a }}$ Median family income calculated from 16 income ranges and families per income range			

TABLE 4B

CINCINNATI NEIGHBORHOODS: WOMEN AND POVERTY, 2005-2009

	Within Total Families			Within Families Below Poverty Level	
Neighborhood	Percent of Families Below Poverty Level	Female Headed Families as Percent of Total Families	Female Headed Families Below Poverty Level		Total Number Female Headed Families Below Poverty Level
1st Quartile					
S. Cumminsville - Millvale	56.9\%	83.4\%	53.4\%	93.8\%	395
Fay Apartments	71.5\%	82.7\%	60.3\%	84.4\%	313
East Price Hill	31.4\%	44.2\%	23.1\%	73.6\%	884
Winton Hills	66.4\%	80.3\%	65.3\%	98.3\%	740
Camp Washington	16.7\%	36.2\%	5.2\%	31.4\%	11
Riverside - Sayler Park	26.9\%	39.9\%	22.7\%	84.2\%	80
Avondale	37.5\%	64.2\%	32.9\%	87.7\%	864
Walnut Hills	34.5\%	62.7\%	26.3\%	76.2\%	297
Sedamsville - Riverside	38.9\%	49.4\%	24.5\%	62.9\%	105
N. Fairmount - English Woods	27.7\%	45.1\%	21.4\%	77.5\%	145
S. Fairmount	38.3\%	47.7\%	22.0\%	57.4\%	143
Mt. Airy	21.3\%	45.5\%	16.5\%	77.7\%	356
2nd Quartile					
Bond Hill	17.8\%	49.1\%	14.1\%	79.4\%	223
Over-the-Rhine	61.7\%	55.6\%	42.5\%	68.8\%	371
Linwood	9.4\%	23.4\%	0.0\%	0.0\%	0
Winton Place	28.7\%	55.2\%	22.4\%	77.9\%	127
Carthage	24.7\%	43.6\%	22.0\%	88.9\%	128
Evanston	21.2\%	48.6\%	18.6\%	87.8\%	302
West End	48.8\%	69.5\%	44.2\%	90.5\%	759
Roselawn	23.2\%	43.3\%	16.6\%	71.8\%	250
Lower Price Hill	48.4\%	19.4\%	13.5\%	28.0\%	21
West Price Hill	15.7\%	31.2\%	13.4\%	85.0\%	577
Corryville	34.8\%	40.6\%	30.1\%	86.6\%	103
Mt. Auburn	23.7\%	38.7\%	21.3\%	89.8\%	159

TABLE 4B

CINCINNATI NEIGHBORHOODS: WOMEN AND POVERTY, 2005-2009

	Within Total Families			Within Families Below Poverty Level	
Neighborhood	Percent of Families Below Poverty Level	Female Headed Families as Percent of Total Families	Female Headed Families Below Poverty Level	Female Headed Families	Total Number Female Headed Families Below Poverty Level
3rd Quartile					
Kennedy Heights	11.1\%	37.3\%	8.7\%	78.3\%	123
University Heights	23.8\%	21.0\%	14.4\%	60.4\%	128
Fairview - Clifton	23.9\%	41.2\%	15.5\%	64.8\%	127
Westwood	16.1\%	34.9\%	10.3\%	64.1\%	836
Northside	13.5\%	30.7\%	6.1\%	45.2\%	103
Madisonville	11.9\%	30.0\%	7.9\%	66.3\%	214
Evanston - E. Walnut Hills	28.7\%	25.4\%	12.5\%	43.7\%	38
Hartwell	14.6\%	29.4\%	10.1\%	69.0\%	109
College Hill	17.3\%	35.0\%	13.7\%	78.8\%	555
N. Avondale - Paddock Hills	10.2\%	38.3\%	9.4\%	91.6\%	120
CBD - Riverfront	0.0\%	21.0\%	0.0\%	--- ${ }^{\text {a }}$	0
4th Quartile					
Oakley	8.4\%	17.2\%	5.7\%	67.6\%	117
Sayler Park	7.2\%	11.3\%	3.8\%	52.8\%	28
East End	14.7\%	45.7\%	14.7\%	100.0\%	51
Mt. Washington	10.2\%	21.1\%	6.6\%	65.1\%	252
Pleasant Ridge	12.8\%	28.0\%	9.6\%	75.4\%	227
East Walnut Hills	5.5\%	20.3\%	3.2\%	57.9\%	22
Clifton	8.1\%	17.0\%	7.4\%	92.0\%	126
California	0.0\%	3.2\%	0.0\%	--- ${ }^{\text {a }}$	0
Mt. Adams	0.0\%	2.4\%	0.0\%	--- ${ }^{\text {a }}$	0
Mt. Lookout - Columbia Tusculum	1.1\%	7.9\%	1.1\%	100.0\%	8
Hyde Park	2.5\%	10.7\%	0.0\%	0.0\%	0
Mt. Lookout	1.2\%	12.7\%	1.2\%	100.0\%	12

[^1]TABle 4C
NEIGHBORHOOD StATUS, 2005-2009

Neighborhood Status	SES Quartile	Predominant Ethnic Composition	Long Term Trend	Current Condition
Avondale	1	African American	After dramatic decline in 1970s; SES index is stable.	Beginning to stabilize
Bond Hill	2	African American	After dramatic decline, decline is slowing	Beginning to stabilize (slower decline)
California	2	White	Continued improvement until 2000	Stable
Camp Washington	1	Appalachian	Continued Improvement since 1980	Improving
Carthage	2	Appalachian (13.2\% Hispanic)	After two decades of improvement, trend has reversed	Declining
C.B.D. - Riverfront	4	White	Tract 6 declined in 1990-2000	Mixed
Clifton	4	White	Little change in 40 years	Stable
College Hill	3	White	Decline in past two decades and in 1970s	Declining
Corryville	2	Integrated (Relatively large Asian population (7.9\%)	Continued pattern of improvement except 1980s	Improving
East End	4	White (Tract 44 predominantly Appalachian)	Continued pattern of improvement since 1970	Improving dramatically
East Price Hill	1	White Census Tracts 92, 93, 94, 95 predominantly Appalachian ; Relatively large Hispanic Population (7.4\%)	Continued pattern of decline since 1970	Declining
East Walnut Hills	4	White	Continued pattern of improvement until 2000	Stable
Evanston	2	African American	Has almost reversed pattern of decline	Stable
Evanston-E.Walnut Hills	3	White *	Significant improvement 19802000	Improving
Fairview-Clifton Heights	2	White	Dramatic improvement until 1990	Declining

TABLE 4C
NEIGHBORHOOD STATUS, 2005-2009

Neighborhood Status	SES Quartile	Predominant Ethnic Composition	Long Term Trend	Current Condition
Fay Apartments	1	African American	Improved 1970-1980	Stable
Hartwell	3	White	Stable until 2000s	Declining
Hyde Park	4	White	Stable since 1970	Stable
Kennedy Heights	3	African American	Had declined since 1970. Improved in 1990s.	Declining
Linwood	1	White	No data for 1970, improved 1980-1990 and 2000-2009	Improving
Lower Price Hill	2	Appalachian	Declined 1970-1990	Improving
Madisonville	3	African American	Slight decline, 1970- 1980, improvement 1980-2000, declined 2005-2009.	Declining
Mt. Adams	4	White	Improved dramatically 1970- 2000	Stable
Mt. Airy	1	African American	Dramatic decline	Declining
Mt. Auburn	2	African American	Improved since 1980	Improving
Mt. Lookout	4	White	Continued improvement, 19701990	Stable
Mt. Lookout/Columbia Tusculum	4	White	Continuous pattern of improvement until 2000	Improving
Mt. Washington	4	White	Dramatic decline in tract 46.01, until 1990	Declining
N. Avondale-Paddock Hills	4	White*	Improved 1980-1990, declined since.	Declining
N. Fairmount-English Woods	1	African American (relatively large Asian population (5.3\%)	Declined 1970-1990, improved since	Improving
Northside	3	White, diverse	Improving since 2000	Improving
Oakley	4	White	Stable 1970-1980, improving since	Improving
Over-the-Rhine	2	African American	Improved 1980-1990, fell in 2000, improved 2000 to 2005-2009	Improving
Pleasant Ridge	4	White	Little change since 1970	Stable

TABLE 4C

NEIGHBORHOOD STATUS, 2005-2009

Neighborhood Status	SES Quartile	Predominant Ethnic Composition	Long Term Trend	Current Condition
Queensgate	-		Has ceased to exist as a residential neighborhood	
Riverside-Sayler Park	1	Appalachian	Improved 1970-1980, declined 1980present	Declining
Roselawn	2	African American	Improved 1970-1980, declined 1980present	Declining
S. Cumminsville-Millvale	1	African American	Declined 1970-1980	Stable (at the bottom)
Sayler Park	4	White	Improved in 1980s and 00s	Stable
Sedamsville-Riverside	1	Predominantly Appalachian	Improved 1970-1980, declined 1980-2000	Stable
South Fairmount	1	White*, Tract 87 Appalachian	Declined 1970-2000	Improving
University Heights	3	White	Improved 1970-1980, declined 1980-2009	Declining
Walnut Hills	1	African American	Has reversed pattern of decline	Improving
West End	2	African American	Has stopped pattern of decline	Improving
West Price Hill	3	White	Slight decline until 2000, declining since.	Declining
Westwood	3	White*, Tract 98 Appalachian	Continued pattern of decline	Declining
Winton Hills	1	African American	Has reversed pattern of decline	Improving
Winton Place	2	African American	Continued pattern of improvement until 1990, declining since.	Declining
* Over 40\% African American				

TABLE 4D

CINCINNATI NEIGHBORHOODS' RACE COMPOSITION AND POVERTY, 2005-2009

	All Families	African American Families		White Families	
Neighborhood	Percent of Families Below Poverty Level	Percent of Families Below Poverty Level	Total Families Below Poverty Level	Percent of Families Below Poverty Level	Total Families Below Poverty Level
1st Quartile					
S. Cumminsville - Millvale	56.9\%	54.6\%	340	56.1\%	37
Fay Apartments	71.5\%	70.2\%	328	0.0\%	0
East Price Hill	31.4\%	43.9\%	584	24.7\%	586
Winton Hills	66.4\%	70.4\%	678	23.0\%	26
Camp Washington	16.7\%	0.0\%	0	20.0\%	35
Riverside - Sayler Park	26.9\%	55.1\%	75	9.2\%	20
Avondale	37.5\%	36.4\%	891	30.6\%	34
Walnut Hills	34.5\%	37.9\%	351	23.6\%	39
Sedamsville - Riverside	38.9\%	58.9\%	73	30.8\%	94
N. Fairmount - English Woods	27.7\%	37.1\%	161	0.0\%	0
S. Fairmount	38.3\%	29.0\%	99	53.2\%	150
Mt. Airy	21.3\%	31.7\%	369	7.5\%	70
2nd Quartile					
Bond Hill	17.8\%	18.5\%	269	13.8\%	12
Over-the-Rhine	61.7\%	72.2\%	518	15.8\%	21
Linwood	9.4\%	--- ${ }^{\text {a }}$	0	9.4\%	16
Winton Place	28.7\%	35.0\%	108	15.4\%	32
Carthage	24.7\%	32.3\%	61	21.1\%	83
Evanston	21.2\%	24.8\%	335	0.0\%	0
West End	48.8\%	57.8\%	839	0.0\%	0
Roselawn	23.2\%	24.3\%	300	18.7\%	48
Lower Price Hill	48.4\%	0.0\%	0	56.4\%	75
West Price Hill	15.7\%	38.2\%	259	12.0\%	420
Corryville	34.8\%	41.7\%	73	16.3\%	13
Mt. Auburn	23.7\%	35.0\%	159	6.3\%	18

TABLE 4D
CINCINNATI NEIGHBORHOODS' RACE COMPOSITION AND POVERTY, 2005-2009

	All Families	African American Families		White Families	
Neighborhood	Percent of Families Below Poverty Level	Percent of Families Below Poverty Level	Total Families Below Poverty Level	Percent of Families Below Poverty Level	Total Families Below Poverty Level
3rd Quartile					
Kennedy Heights	11.1\%	14.1\%	141	0.0\%	0
University Heights	23.8\%	49.1\%	86	15.0\%	74
Fairview - Clifton	23.9\%	34.9\%	89	11.4\%	57
Westwood	16.1\%	23.9\%	814	9.2\%	388
Northside	13.5\%	20.3\%	119	9.8\%	105
Madisonville	11.9\%	22.0\%	323	0.0\%	0
Evanston - E. Walnut Hills	28.7\%	34.9\%	61	20.3\%	26
Hartwell	14.6\%	25.3\%	95	9.2\%	63
College Hill	17.3\%	25.9\%	608	6.1\%	96
N. Avondale - Paddock Hills	10.2\%	12.6\%	100	7.0\%	31
CBD - Riverfront	0.0\%	0.0\%	0	0.0\%	0
4th Quartile					
Oakley	8.4\%	38.3\%	51	6.5\%	122
Sayler Park	7.2\%	--- ${ }^{\text {a }}$	0	7.3\%	53
East End	14.7\%	40.0\%	30	7.7\%	21
Mt. Washington	10.2\%	30.5\%	64	9.1\%	323
Pleasant Ridge	12.8\%	29.7\%	254	2.5\%	34
East Walnut Hills	5.5\%	6.4\%	12	5.2\%	26
Clifton	8.1\%	24.1\%	79	1.0\%	12
California	0.0\%	--- ${ }^{\text {a }}$	0	0.0\%	0
Mt. Adams	0.0\%	--- ${ }^{\text {a }}$	0	0.0\%	0
Mt. Lookout - Columbia Tusculum	1.1\%	0.0\%	0	1.1\%	8
Hyde Park	2.5\%	0.0\%	0	2.6\%	75
Mt. Lookout	1.2\%	--- ${ }^{\text {a }}$	0	1.2\%	12

${ }^{\text {a }}$ Neighborhood has no African American families. Therefore, percent is an undefined number.

Working Class African American Neighborhoods

CHANGES IN SES SCORES FOR Working Class African American NEIGHBORHOODS	
Neighborhood	$\begin{array}{r} 2000 \text { to } \\ 2005-2009 \end{array}$ Change in SES Score
Over-the-Rhine	24.6
North Fairmount - English Woods	19.4
West End	14.7
Winton Hills	11.6
Mt. Auburn	8.5
Avondale	1.4
Fay Apartments	1.4
Walnut Hills	1.3
Evanston	-1.4
South Cumminsville-Millvale	-3.8
Mt. Airy	-15.7

Among working class African American neighborhoods Evanston and South CumminsvilleMillvale experienced marginal decline (Table $4 \mathrm{~d}-2$). The decline in Mt. Airy was more substantial at 15.7. West End, Over-the-Rhine, North Fairmount-English Woods, and Winton Hills had gains of more than 10 points on the SES scale. Avondale and Fay Apartments each gained 1.4 points. What are the components of change? Appendix II allows us to look at Cincinnati census tracts and see values in the five SES variables over time. If we compare these values to those in the Fourth Edition we can see which variables caused the change. In Fay Apartments we find that gains in education and occupation offset decline in income to slightly improve the SES index.

In Walnut Hills income was a factor in the positive change except in tract 37 where income actually declined. In the West End's tract 2 income nearly doubled in the past decade. But its rank on other variables fell so that its rank among Cincinnati's neighborhoods remained at 19. The West End's improvement in overall score is partly due to the dramatic changes in Tract 4. Again, the details of this change can
be found by comparing Appendix II from this edition and the fourth edition.

As Over-the-Rhine, the West End, and Corryville become more cosmopolitan those neighborhoods are losing some of their working class and ethnic flavor. Some of this is the result of intentional community development efforts and some is related to the incipient renewed demand for urban life style especially on the part of the young. As this happens, as noted above, the "inner city" continues to shift to the west and out of the Basin Area. Walnut Hills (except for Tract 19) and Avondale are not affected by these trends in any obvious way and remain a largely low income, low SES, enclave. During the past twenty years the African American working class area has

> Walnut Hills (except for Tract 19) and Avondale are not affected by these trends in any obvious way and remain a largely low income, low SES, enclave.
expanded to include tracts 100.01 and 100.02 in Westwood, tract 89 in South Fairmount and three of the four Mt. Airy tracts (Figure 5). Mt. Airy has declined more than any neighborhood (60 points) since 1970, followed closely by Bond Hill (47) and Roselawn (42). See Table 9.

Working Class White Areas

Among the working class white Appalachian areas Camp Washington, South Fairmount, the East End, and Lower Price Hill saw improvements in the 2000 to 2005-2009 period. East Price Hill continued a pattern of decline. Carthage, which had experienced positive change in the 1990s experienced a small decline in SES in the 2000s. Northside, which has affluent as well as working class areas, saw an increase in its SES score (Table 9). Sedams-ville-Riverside declined insignificantly in the past three decades after some improvement in the 1970's. During the 2000s, Riverside-Sayler Park was at the top of the list of declining neighborhoods with a 38.4 drop in SES score (Table 2g2).

TABLE 4E
CINCINNATI NEIGHBORHOODS' AFRICAN AMERICAN POPULATION, 1970-2009

TAble 4E
Cincinnat
Cincinnati Neighborhoods' African American Population, 1970-2009

	Percent African American					Percent Change				
Neighborhood	1970	1980	1990	2000	2005-2009	1970-1980	1980-1990	1990-2000	2000-2009	1970-2009
University Heights	9.2	12.7	12.9	18.2	19.6	38\%	2\%	41\%	8\%	113\%
Fairview - Clifton	6.3	10.0	10.8	19.7	15.2	59\%	8\%	83\%	-23%	141\%
Westwood	1.2	4.5	17.6	25.8	43.4	275\%	291\%	47\%	68\%	3519\%
Northside	4.0	12.4	20.6	37.5	32.3	210\%	66\%	82\%	-14\%	707\%
Madisonville	49.3	56.9	59.2	33.0	55.8	15\%	4\%	-44\%	69\%	13\%
Evanston - E. Walnut Hills	74.1	67.7	47.7	61.3	48.0	-9\%	-30\%	28\%	-22\%	-35\%
Hartwell	8.2	10.7	15.9	18.1	28.8	30\%	49\%	14\%	59\%	251\%
College Hill	11.2	33.9	40.9	37.6	54.2	203\%	21\%	-8\%	44\%	384\%
N. Avondale - Paddock Hills	37.6	53.0	55.4	51.8	44.4	41\%	5\%	-6\%	-14\%	18\%
CBD - Riverfront	13.6	18.8	36.8	39.9	37.9	38\%	96\%	8\%	-5\%	179\%
4th Quartile										
Oakley	0.6	2.6	6.6	9.2	10.0	333\%	154\%	40\%	8\%	1562\%
Sayler Park	1.3	1.9	1.8	0.8	1.1	46\%	-5\%	-54\%	33\%	-16\%
East End	15.3	12.6	8.5	10.8	24.6	-18\%	-33\%	27\%	128\%	61\%
Mt. Washington	0.0	--- ${ }^{\text {a }}$	2.7	2.6	4.7	---b	--- ${ }^{\text {b }}$	-4\%	79\%	---b
Pleasant Ridge	4.4	15.9	24.1	39.9	33.2	261\%	52\%	65\%	-17\%	655\%
East Walnut Hills	32.1	32.9	36.0	29.5	28.8	2\%	9\%	-18\%	-3\%	-10\%
Clifton	8.7	12.3	12.9	15.2	18.0	41\%	5\%	18\%	18\%	107\%
California	0.0	0.0	1.6	0.0	0.0	---b	--- ${ }^{\text {b }}$	-100\%	--- ${ }^{\text {b }}$	--- ${ }^{\text {b }}$
Mt. Adams	4.2	4.1	2.8	1.6	0.5	-2\%	-32\%	-42\%	-68\%	-88\%
Mt. Lookout - Columbia Tusculum	--- ${ }^{\text {a }}$	4.0	6.1	7.6	7.2	--- ${ }^{\text {b }}$	53\%	25\%	-5\%	--- ${ }^{\text {b }}$
Hyde Park	2.8	3.7	3.1	2.7	1.2	32\%	-16\%	-12\%	-56\%	-58\%
Mt. Lookout	5.0	0.1	0.5	0.0	0.2	-98\%	400\%	-100\%	--- ${ }^{\text {b }}$	-95\%
${ }^{\text {a }}$ Statistics not available.										
${ }^{\text {b }}$ Percent change is an undefined number.										

Table 4F

Hispanic Population Concentrations, 1990-2009a

	Persons of Hispanic Origin			$\begin{gathered} \text { Increase } 2000 \text { to } \\ 2005-2009 \end{gathered}$	
Neighborhood	1990	2000	2005-2009	Number	Percent
East Price Hill	113	240	1,393	1,153	480\%
Westwood	227	336	1,013	677	201\%
West Price Hill	104	195	718	523	268\%
Mt. Washington	65	141	418	277	196\%
Mt. Airy	48	176	415	239	136\%
Roselawn	59	48	346	298	621\%
Carthage	19	41	322	281	685\%
Hartwell	65	81	230	149	184\%
N. Avondale - Paddock Hills	141	85	213	128	151\%
Hyde Park	111	199	205	6	3\%
Oakley	84	223	152	-71	-32\%
Pleasant Ridge	68	121	150	29	24\%
Evanston	39	49	148	99	202\%
Sayler Park	13	25	144	119	476\%
Clifton	133	193	139	-54	-28\%
S. Fairmount	34	75	117	42	56\%
Walnut Hills	24	71	117	46	65\%
Winton Place	17	53	117	64	121\%
College Hill	73	120	79	-41	-34\%
University Heights	145	141	72	-69	-49\%
Fairview-Clifton	126	137	60	-77	-56\%
Over-the-Rhine	61	172	46	-126	-73\%
Avondale	75	113	39	-74	-65\%
Lower Price Hill	6	142	21	-121	-85\%
West End	36	119	18	-101	-85\%
${ }^{a}$ Neighborhoods with Hispanic populations less than 100 (in either the 2000 Census or 2005-2009 ACS) do not appear in Table 4f.					

During the 2000s, Riverside-Sayler Park was at the top of the list of declining neighborhoods with a 38.4 drop in SES score (Table 2g2).

Over the 40-year period, East Price Hill declined from a rank of 19 to a rank of 3.5 among Cincinnati neighborhoods (Table 9). It declined 9 points in the 2000s. South Fairmount has changed radically in racial composition and is now 49.7 percent African American. It has declined 6.7 SES points since 1970 but actually gained 6.4 points in the 2000s (Table 9). Tract 87 is still primarily Appalachian. Tract 98 in West Price Hill is now considered to be primarily Appalachian. It did not decline in SES during the 2000s. The map of Appalachian neighborhoods otherwise changed little in the 2000s (Figure 6).

Hispanic Concentrations

The number of Hispanics increased from 2,386 in 1990 to 4,230 in 2000 and 9,186 in the 2010 census. Hispanics are dispersed throughout the 48 neighborhoods and do not constitute a large percentage in any one neighborhood. The largest concentrations are shown in Table 4 f .
Because of the limitations of the American Community Survey data when dealing with small populations, this data is primarily illustrative of the Hispanic
 pattern of settlement. There is a preference for location on the West Side in Cincinnati. About 3,500 Hispanics live in East Price Hill, Westwood, West Price Hill, and Mt. Airy. There is a smaller concentration along the upper Vine Street corridor which includes Carthage and Hartwell. It is worth noting that the numbers of Hispanics increased significantly in some areas while declining in others such as the West End, Over-the-Rhine and Lower Price Hill. We compared the numbers in Table 4 f to the 2000 census and found that there were serious variations. Hispanic data
using the 2010 census for Cincinnati census tracts is available from the authors.

Agencies concerned about newcomer Hispanics who may need services would want to include the West Side neighborhoods as well as the Vine Street corridor. The growing Hispanic community is very complex in terms of socioeconomic status, and ability to use the English language. New immigrants may be subject to exploitation because of language and immigration status issues. In low-income communities such as Over-the-Rhine and Lower Price Hill, there has been some intergroup tension, discrimination, and crime involving African Americans, Appalachians, and Hispanics. Various agencies have responded by providing interpreters and other services to newcomers.

TABLE 4G		
NEIGHBORHOODS WITH Hispanic		
PopuLATION INCREASES, 2005-2009		
Neighborhood	Persons of Hispanic Origin	Percent Increase 2000 to $\mathbf{2 0 0 5 - 2 0 0 9}$
Carthage	322	685%
Roselawn	346	621%
East Price Hill	1,393	480%
Sayler Park	144	476%
West Price Hill	718	268%
Evanston	148	202%
Westwood	1,013	201%
Mt. Washington	418	196%
Hartwell	230	184%
N. Avondale - Paddock Hills	213	151%
Mt. Airy	415	136%
Winton Place	117	121%
Walnut Hills	117	65%
S. Fairmount	117	56%
Pleasant Ridge	150	24%
Hyde Park	213	3%

What Causes Decline

What do the thirteen neighborhoods which experienced the greatest decline have in common? They are all, except Winton Place and Carthage, present or former (Mt. Airy) high status areas, SES III or IV. Eight of the thir-
teen had an increase in the percentage of African Americans during the decade. Three experienced a decrease on this variable and two saw no change (Table 4e). Rapid racial change can be a factor in decline because new residents sometimes are younger families with lower income and education and a different family structure than the people who had lived in the neighborhood before. This is true regardless of the race of the newcomers. In Kennedy Heights the higher status people leaving may have been part of the African American upper middle class. Shifts in the national and local economy such as the last two recessions are another factor. In the current economy, even wealthy areas such as Mt. Adams have experienced decline in median family income.

In the previous sub sections we have used the 1970-2000 US censuses and the 2005-2009 American Community Survey to analyze trends in Cincinnati as they affect various subgroups of the population including African Americans and Appalachians. We focus in on these two groups because they are large components of the population, and, in many respects, the future of the city and metropolitan area are tied to their welfare. We also provide some data on the emerging Hispanic population. Immigration from all sources is not a major factor in Cincinnati's overall demographic picture. During the period of this study (1970 to 20052009) the percentage declined in three of the four SES quartiles and remained the same in the other (Table 2b).

The Distribution of Poverty

Table 4 d shows the percentage of families below poverty for each neighborhood. It also reveals the percent and number that are white or African American. Table 4e just reveals the percentage of the neighborhood that was African American from 1970-2005-2009. The lower SES predominantly African American census tracts are as follows: Avondale (all 5 tracts), Mt. Auburn (2 of 3 tracts), South Cummins-ville-Millvale, Fay Apartments, Corryville (1 of 2 tracts), Over-the-Rhine (4 of 5 tracts), North Fairmount-English Woods, Evanston (2 of 3 tracts), Walnut Hills (3 of 5 tracts), West End (4 of 7 tracts), Westwood (1 of 6 tracts), Winton

Hills, Roselawn (1 of 2 tracts), Mt. Airy (1 of 2 tracts), and Evanston-East Walnut Hills (Figure 5).
In African American neighborhoods, poverty rates were highest in Fay Apartments (71.5 percent), Winton Hills (66.4 percent), Over-the-Rhine (61.7 percent), South CumminsvilleMillvale (56.9 percent), West End (48.8 percent), and Avondale (37.5 percent).
These rates were higher than in 2000 except in North Fairmount-English Woods where the rate fell significantly and in the West End where it was unchanged.

The white neighborhoods with the highest poverty rates were Lower Price Hill (48.4 percent), Sedamsville-Riverside (38.9 percent), part of South Fairmount (38.3 percent), East Price Hill (31.4 percent), Riverside-Sayler Park (26.9 percent), and Carthage (24.7 percent).
The neighborhoods near the University of Cincinnati, University Heights, Fairview-Clifton Heights and Corryville, had poverty rates of 23 percent or higher (Figure 5, Table 4d).

The neighborhoods with the highest numbers of poor African American families in 2005-2009 were Avondale (891), West End (839), Westwood (814), Winton Hills (678), College Hill (608), and East Price Hill (584). As we reported in the Fourth Edition poverty is increasingly concentrated west of the I-75 corridor. However, a look at Figure 5 confirms a large concentration of poverty in

Poverty rates were higher than in 2000 except in North Fairmount-English Woods where the rate fell significantly and in the West End where it was unchanged. the Basin and in the Walnut-Hills-Avondale-Evanston-University of Cincinnati area. On this map, the areas that are shaded but not cross-hatched are the primary concentration of white poverty. It should be noted that there are significant numbers of poor white families in predominantly African

American neighborhoods and that the converse of that is also true. In 2005-2009 there were 3,355 white families in poverty in Cincinnati. Over 2000 of these families were concentrated in East Price Hill (586), West Price Hill (420), Westwood (388), Mt. Washington (323), South Fairmount (150), Northside (105), and Oakley (122).

Summary

In 2005-2009 there were 13,772 families below the poverty level in Cincinnati. Seventy-six percent were African American. This represents a change from 1990 when there were 16,945 poor families, 71% of whom were African American. In 1990 there were 5,052 poor white families. In 2005-2009 there were 3,355 , down from 3,367 in 2000 . The Hispanic population continued to grow at a high rate and is beginning to be a visible population in several neighborhoods. The percent foreign born has been at 3 percent or below since 1970 but the Hispanic proportion of that number has grown.
When we began this study in 1970 there were nine neighborhoods with African American majorities. By 2005-2009 there were 17. Eight of these were more than 75 percent African American. The comparable numbers for 2000 were 16 and 10 . During the past decade, 21 neighborhoods actually declined in percent African American, most notably Corryville, Mt. Auburn, and Evanston-East Walnut hills (Table 4e). So we have neighborhoods changing racial composition in both directions. The biggest declines are in neighborhoods experiencing gentrification. The biggest increases are in neighborhoods experiencing rapid change such as Price Hill, Westwood and Mt. Airy. The data in Table 2b show that SES I and II, the two lowest SES quartiles, are substantially less African American now than in 2000. This is also true of SES IV. SES III had a growing percentage of African Americans but the rate of this growth has declined. It is safe to say that Cincinnati is less segregated now than it was a decade ago. We are not a cosmopolitan city. Ninety-seven percent of our population was born in the United States. Our population is overwhelmingly people of European, African, and Appalachian origin. Lack of language
diversity has become a handicap in retaining at least one corporate headquarters. The great majority of our Hispanics are "language isolated" (speak only one language) according to the 2010 census (not ACS).

The case can be made that we are an integrated or segregated city depending on how you slice the data. Socioeconomically, we can still see a lot of segregation though we can see some encouraging signs especially in the part of the city between the hills. Most of the poor still live in SES I and II (Table 2b). Fourteen of the majority African American neighborhoods are in the two lowest SES quartiles. Seven are in SES I, 7 in SES II, and 3 in SES III, none in SES IV. Table 4e shows that in 1970 there were 24 neighborhoods with African American percentages of less than 10 . In 2000 there were 12 and in 2005-2009 there were only 9.

Chapter 5

Appalachian Cincinnati

I ntroduction

The term Appalachian is not synonymous with poverty. The vast majority of Appalachians in the metropolitan area are not poor, not on welfare, and are not high school dropouts. Most own their homes and have relatively stable families. They are a predominantly blue collar group. About 10 percent hold managerial and professional jobs. In socioeconomic status white Appalachians, as a group, hold a position between non-Appalachian whites and African Americans. In inner city Cincinnati (and probably Covington and Newport), however, Appalachians in some respects hold a socioeconomic position closer to African Americans than to non-Appalachian whites. African American Appalachians tend to blend into the larger African American community and so are not identifiable in the type of analysis offered here. Other studies show them to be about 16 percent of the Appalachian population in Cincinnati(1).

Figure 6 shows the relationship of Appalachians to poverty. Most of the tracts considered Appalachian are also high poverty areas. In addition to the areas mentioned in Cincinnati there are many Appalachian sections beyond the city limits - in Norwood, Covington, and Newport for example. Clermont County is an Appalachian county. South Lebanon, Western Hamilton County and Dearborn County also have Appalachian concentrations for example, in Harrison and West Harrison.

In previous editions of this report, Figure 6 showed Appalachian enclaves on both the west and east sides. The current data (Figure 6) shows Appalachians concentrated mainly on the west side and heavily African American (Figure 5) tracts increasing on the west side. The Appalachian population in the East End, Oakley, and Linwood has probably declined as these neighborhoods become more upscale. Linwood is no longer on the list of Appalachian neighborhoods. Along the Mill Creek, Carthage, Camp Washington, one tract
in South Fairmount and Lower Price Hill are still mainly Appalachian but the lower half of Northside did not meet the criteria as it has in the past. The largest concentration of Appalachians in Cincinnati includes East Price Hill, one tract in West Price Hill, Lower Price Hill,

> The largest concentration of
> Appalachians in Cincinnati includes East Price Hill, one tract in West Price Hill, Lower Price Hill, Sedamsville-Riverside and Riverside-Sayler Park.

Sedamsville-Riverside and Riverside-Sayler Park. People of Appalachian heritage, at various stages of assimilation or non-assimilation, now live in every section of Cincinnati and its environs and are estimated to comprise as much as 40% of the total regional population.

All of the Appalachian areas are in SES I and II. There are no high SES areas that would parallel Kennedy Heights and North Avondale, which are high SES African-American areas. As far as we know, higher status Appalachians do not concentrate in ethnic enclaves. White Appalachians do not face discrimination unless they have a noticeable accent or class identifiers such as living in a

As far as we know, higher status Appalachians do not concentrate in ethnic enclaves.

 low income area, poorclothing, or the wrong kind of car. Schooling is still a big problem for inner city Appalachians. Some of the highest dropout rates and lowest adult education levels are in Appalachian neighborhoods. See Chapter 6, Figures 7, 8, and 9 . See also the section on poverty in white working class communities in Chapter 4.
Figure 6
Cincinnati Neighborhood Approximation
45. Westwood
46. Sedamsville - Riverside
47. Riverside - Sayler Park
48. Sayler Park Queensgate
West End CBD - Riverfront . Over-the-Rhine 23. Madisonville
24. Pleasant Ridge 24. Pleasant Ridge
26. Hartwell
27. Carthage
28. Roselawn
29. Bond Hill
30. N. Avondale
32. Clifton
33. Winton Place
35. S. Cumminsvill
36. Winton Hills
37. College Hill
38. Mt. Airy
39. Fay Apartments
40. N. Fairmount - E
42. Lower Price Hill
43. East Price Hill
44. West Price Hill
7. Fairview - Clifton Heights 8. Camp Washington

[^2] Legend

$\begin{aligned} & \square \text { Neighborhood boundary } \\ & \square \text { Census tract boundary } \\ & \square \text { Appalachian } \\ & \text { Percent below poverty } \\ & \square<23 \% \\ & \square>23 \% \text { (city tracts mean) } \\ & \square \mathrm{NA}^{\star}\end{aligned}$ Legend
$\begin{aligned} & \square \\ & \text { Neighborhood boundary } \\ & \square \\ & \text { Census tract boundary } \\ & \square \\ & \text { Appalachian } \\ & \text { Percent below poverty } \\ & \square<23 \% \\ & \square \\ & \square=23 \% \text { (city tracts mean) } \\ & \square\end{aligned} \begin{aligned} & \square A^{*}\end{aligned}$ Legend
$\begin{aligned} & \square \\ & \text { Neighborhood boundary } \\ & \square \\ & \text { Census tract boundary } \\ & \square \\ & \text { Appalachian } \\ & \text { Percent below poverty } \\ & \square<23 \% \\ & \square \\ & \square=23 \% \text { (city tracts mean) } \\ & \square\end{aligned} \begin{aligned} & \square A^{*}\end{aligned}$ Legend
$\begin{aligned} & \square \\ & \text { Neighborhood boundary } \\ & \square \\ & \text { Census tract boundary } \\ & \square \\ & \text { Appalachian } \\ & \text { Percent below poverty } \\ & \square<23 \% \\ & \square \\ & \square=23 \% \text { (city tracts mean) } \\ & \square\end{aligned} \begin{aligned} & \square A^{*}\end{aligned}$ Legend
$\begin{aligned} & \square \\ & \text { Neighborhood boundary } \\ & \square \\ & \text { Census tract boundary } \\ & \square \\ & \text { Appalachian } \\ & \text { Percent below poverty } \\ & \square<23 \% \\ & \square \\ & \square=23 \% \text { (city tracts mean) } \\ & \square\end{aligned} \begin{aligned} & \square A^{*}\end{aligned}$ Legend
$\begin{aligned} & \square \\ & \text { Neighborhood boundary } \\ & \square \\ & \text { Census tract boundary } \\ & \square \\ & \text { Appalachian } \\ & \text { Percent below poverty } \\ & \square<23 \% \\ & \square \\ & \square=23 \% \text { (city tracts mean) } \\ & \square\end{aligned} \begin{aligned} & \square A^{*}\end{aligned}$
106
48
00 Neighborhood number
00.00 Census tract number

Social Areas of Cincinnati

CHAPTER 5 | APPALACHIAN CINCINNATI

Defining Appalachian

One of the concerns in describing Appalachian neighborhoods in Cincinnati is the problem of identifying them. In the 1960s most Cincinnatians probably thought that Appalachians lived in Over-The-Rhine and knew little beyond that. Over the years the list expanded to include Lower Price Hill, Northside, Camp Washington, East End and several other city neighborhoods. (By 1980, Over-the-Rhine was primarily African American.)

In The Social Areas of Cincinnati, Second Edition (1986) a set of criteria was defined and a formal list of Appalachian neighborhoods was developed. These criteria have been revised for this edition and are displayed in Table 5a and include the percent below poverty, percent of African American population, high school dropouts, joblessness rate, occupational status and family size.

TABLE 5A

CRITERIA FOR CLASSIFYING
 NEIGHBORHOODS AS APPALACHIAN

1. Greater than 23% of the families are below the poverty level
2. Less than 41.0% of families are African American
3. Less than 80% of the persons 25 years or older are high school graduates
4. More than 7% of the persons 16-19 years old who are not in school are not high school graduates
5. More than 62% of the persons 16-19 years old are jobless (includes those unemployed and those not in the civilian labor force)
6. More than 3 persons per average family

If a community met six of the seven criteria, it was considered to have a majority of Appalachian population. If at least four criteria were met, the neighborhood was identified as having a significant Appalachian population, but not as long as the African American population was more than 41.0 (the city wide) percentage.

Starting with a list of neighborhoods created from this criteria, in 1996 Fred Hoeweler updated the list using the same criteria and applied them using block group data from the 1990 census. The Hoeweler version of the 1986

Maloney/Heller list deleted Oakley and added East Price Hill. For the present edition, Christopher Auffrey deleted the occupational index from the criteria and derived a list of neighborhoods which met at least four of the six remaining criteria. They are Camp Washington, Carthage, East End (part), East Price Hill, Lower Price Hill, Riverside-Sayler Park, West Price Hill (part), Sedamsville-Riverside, CBDRiverfront (part) and South Fairmount (part). All together ten neighborhoods are considered Appalachian (Table 5b). The authors acknowledge the circular reasoning involved in using these negative criteria to define Appalachian neighborhoods. We can say minimally that Cincinnati's Appalachian leaders concur that these are Cincinnati neighborhoods with high percentages of people of Appalachian origin.

TABLE 5B Cincinnati Neighe Appalachian Cens 2009^{a}	RHO US Tr	ACT			
Neighborhood	Appa	achi	C	us T	
CBD-Riverfront	7				
Camp Washington	28				
East End	44				
Carthage	61				
East Price Hill	92	93	94	95	96
West Price Hill	98				
Lower Price Hill	91				
Sedamsville-Riverside	103				
Riverside - Sayler Park	104				
South Fairmount	87				
${ }^{\mathrm{a}}$ Met at least four of the six criteria for classifying census tracts as Appalachian (see Table 5a).					

Tracts with populations of African Americans greater than 41.0% are not considered Appalachian.

Overall Trends, 1970, 2000, and 2005-2009
 Population Loss

Tables 5c and 5d present neighborhood indicators from 1970, 2000 and 2005-2009. This comparison allows us to make conclusions regarding Cincinnati's Appalachian neighborhood changes during this period. Before looking at socioeconomic indicators, we will look at the
population of these areas. The first conclusion is that all neighborhoods except Riverside-Sayler Park and CBD-Riverfront lost population. This is not surprising. During the same period the City of Cincinnati lost 112,314 people. The most severe losses in percentage terms were in Lower Price Hill, the East End, South Fairmount, Camp Washington, and Sedams-ville-Riverside. These lost about half of their respective populations. East Price Hill has reversed its pattern of population loss.

Socioeconomic Status

Between 1970 and 2005-2009, four of the ten Appalachian neighborhoods had overall gains in socioeconomic status (Tables 5d and 9). In the most recent period, 2005-2009, a total of four neighborhoods had gains. SedamsvilleRiverside had a decline in SES. The biggest gains were in the East End and Lower Price Hill. (As noted above, we have low confidence in ACS data for small neighborhoods such as Lower Price Hill.) The other six neighborhoods experienced a decline in SES index between 2000 and 2005-2009. The biggest losses were in Riverside-Sayler Park (38.4) and West Price Hill (22.2).

Poverty

During the 1980s poverty increased dramatically in Ohio's metropolitan centers. In Hamilton County the increase was 18 percent. In inner city neighborhoods the increase was even higher than in the county as a whole. Deindustrialization, migration of jobs to suburbia, and the shift to lower paying service jobs are all believed to be factors in the increase of poverty. Poverty rates doubled in several Cincinnati Appalachian neighborhoods, increased in all of them, and tripled in East Price Hill. In South Fairmount the poverty rate went from 11.5 percent in 1970 to 28.1 percent in 2000. Poverty in Camp Washington also increased considerably from 1970 to 2000. Between 2000 and 2005-2009, the poverty rate (Table $5 d)$ doubled in Carthage and Sedamsville-riverside, increased in East End, East Price Hill, South Fairmount and Riverside-Sayler Park. It declined in Camp Washington, West Price Hill and Lower Price Hill.

Components of Change

Analysis of the components of change in Appalachian neighborhoods makes clear that a decline in family status indicator is significant. This seems to be related to poverty status. The neighborhoods which experienced the greatest increases in poverty tended also to be the ones with the greatest declines in family status. The unemployment rate (Table 8a) does not

TABLE 5C
CINCINNATI APPALACHIAN CENSUS TRACT POPULATIONS, 1970-2009

Neighborhood	Census Tract(s)	Population	Population	Population	Change	Change
		$\mathbf{1 9 7 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5 - 2 0 0 9}$	$\mathbf{1 9 7 0 - 2 0 0 9}$	$\mathbf{2 0 0 0} \mathbf{- 2 0 0 9}$
East End	44	3,751	1,262	1,728	-53.9%	36.9%
CBD-Riverfront	7	2,290	2,639	3,253	42.1%	23.3%
West Price Hill	98	3,982	2,492	2,797	-29.8%	12.2%
East Price Hill	$92,93,94,95$	20,665	17,991	18,798	-9.0%	4.5%
Riverside-Sayler Park	104	1,435	1,530	1,577	9.9%	3.1%
Carthage	61	3,291	2,412	2,445	-25.7%	1.4%
South Fairmount	87	2,531	1,071	1,085	-57.1%	1.3%
Camp Washington	28	3,117	1,611	1,422	-54.4%	-11.7%
Sedamsville-Riverside	103	3,922	2,144	1,774	-54.8%	-17.3%
Lower Price Hill	91	3,187	1,182	758	-76.2%	-35.9%

Note: Fairview Clifton Heights, University Heights and tract 96 in East Price Hill no longer meet the criteria
as clearly seem related to a decline in family status or SES. Unemployment is over 15 percent in four Appalachian neighborhoods. It is 9 percent or more in the three others. School

Analysis of the components
of change in Appalachian
neighborhoods makes clear that a decline in family status indicator is significant.
dropout rates have declined in most of these neighborhoods but have remained at over 20 percent in CBD, Camp Washington, East Price Hill, West Price Hill, Lower Price Hill, and Se-damsville-Riverside (Table 5d).

Summary

Poverty, low education levels, and unemployment still are big factors in Cincinnati's Appalachian communities. Related to this there are big changes in family structure. For example, in 1990, 82 percent of the children in the East End lived in two parent homes. By 2005-2009, this had fallen to 34.2 percent. Camp Washington and Lower Price Hill have school dropout rates of over 60 percent. In neighborhoods like East Price Hill and West Price Hill there are thousands of adults with less than a high school education.

Neighborhood	SES Index			Unemployment			Families Below Poverty Level			Family Status			High School Dropout Rates		
	1970	2000	$\begin{aligned} & 2005- \\ & 2009 \\ & \hline \end{aligned}$	1970	2000	$\begin{aligned} & \hline 2005- \\ & 2009 \\ & \hline \end{aligned}$	1970	2000	$\begin{gathered} 2005- \\ 2009 \\ \hline \end{gathered}$	1970	2000	$\begin{gathered} \hline 2005- \\ 2009 \\ \hline \end{gathered}$	1970	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$
CBD-Riverfront	80.0	81.0	75.7	37.8\%	6.8\%	0.0\%	44.0\%	75.0\%	100.0\%	4\%	6\%	3\%	24\%	63\%	61\%
Camp Washington	16.2	27.8	31.2	18.1\%	36.0\%	16.7\%	70.4\%	31.5\%	54.2\%	9\%	14\%	14\%	50\%	34\%	49\%
East End	18.3	46.4	77.4	21.6\%	12.0\%	14.7\%	75.3\%	32.1\%	34.2\%	9\%	7\%	5\%	36\%	13\%	0\%
Carthage	50.7	53.0	42.2	7.4\%	12.1\%	31.4\%	82.7\%	66.7\%	44.7\%	5\%	4\%	17\%	32\%	41\%	0\%
East Price Hill	56.8	38.0	29.0	10.4\%	23.0\%	23.9\%	79.9\%	43.1\%	32.8\%	5\%	7\%	8\%	22\%	14\%	22\%
West Price Hill	79.4	75.6	55.4	8.6\%	15.5\%	9.4\%	84.8\%	39.2\%	44.0\%	2\%	2\%	9\%	4\%	14\%	20\%
Lower Price Hill	21.0	19.2	45.0	32.9\%	56.0\%	48.4\%	71.3\%	57.6\%	37.6\%	7\%	16\%	37\%	46\%	58\%	64\%
Sedamsville-Riverside	25.1	35.4	33.0	17.3\%	17.0\%	38.9\%	83.6\%	57.7\%	33.3\%	7\%	9\%	27\%	37\%	28\%	22\%
Riverside - Saylerpark	49.0	70.4	32.0	6.2\%	18.2\%	27.0\%	82.6\%	47.5\%	17.4\%	4\%	9\%	16\%	21\%	26\%	8\%
South Fairmount	42.5	29.4	35.8	11.5\%	28.1\%	33.3\%	74.4\%	39.2\%	35.7\%	3\%	1\%	12\%	48\%	40\%	0\%

56

Chapter 6

Education In Cincinnati

This chapter on education in Cincinnati is divided into three sections; school dropouts, adult education, and functional illiteracy. A fourth section on education in the metropolitan area closes the chapter.

School Dropouts

Figure 7 presents the neighborhood dropout rates. These rates reflect 16-19 year olds that reported in the American Community Survey (ACS) they were not in school and had not graduated.

A comparison of 2005-2009 ACS data (Table 6a) and 1980 data shows the 16-19 year old dropout rates increased in 10 neighborhoods. Two of these were in SES I, four in SES II, four in SES III, and none in SES IV. In terms of

> The neighborhoods with the largest numbers as opposed to percentages of dropouts were East Price Hill (296), Westwood (180), Roselawn (178), and Avondale (119).
race and ethnicity, the dropout rate increased in five white neighborhoods and in four African American neighborhoods. The white neighborhoods are those which are now or were once on the list of Appalachian neighborhoods and some have growing Hispanic populations. In Table 6a, seventeen neighborhoods show up as having a dropout rate of zero. In 2000, there were only five such neighborhoods. Because of its sample size, the American Community Survey cannot calculate a rate if the number of dropouts falls below about 20 .

In 2005-2009, the ten neighborhoods with the highest dropout rates (Table 6b) are Lower Price Hill (64 percent), CBD (61 percent), Camp Washington (49 percent), Linwood (46 percent), Hartwell (30 percent), North FairmountEnglish Woods (26 percent), Winton Hills (24 percent), Roselawn (23 percent), SedamsvilleRiverside (22 percent), and East Price Hill (22
percent). Half of these were also on the top 10 (12 because of ties) in 2000 but CBD, Hartwell, Winton Hills, Roselawn and East Price Hill are new. South Cumminsville-Millvale, Over-theRhine, West End, Fay Apartments, Walnut Hills, and Evanston are no longer on the list. Research is needed to uncover why these shifts in the map of school dropouts have occurred. Some are associated with demographic shifts and related changes in SES, but only three of the high dropout neighborhoods were on the list of high SES losses in Table 2-g2. Others may be due to factors such as opening or closing schools or education reform.

The neighborhoods with the largest numbers as opposed to percentages of dropouts were East Price Hill (296), Westwood (180), Roselawn (178), and Avondale (119).
Figure 7

TABLE 6A CINCINNATI								
Neighborhood	High School Drop-Out Rate							
	1980		1990		2000		2005-2009	
	Percent	Number	Percent	Number	Percent	Number	Percent	Number
1st Quartile								
S. Cumminsville-Millvale	12\%	62	25\%	72	23.9\%	70	21.4\%	43
Fay Apartments	20\%	36	16\%	29	30.2\%	73	14.7\%	17
East Price Hill	32\%	493	14\%	176	25.7\%	323	22.4\%	296
Winton Hills	20\%	140	26\%	127	47.2\%	159	23.8\%	98
Camp Washington	50\%	59	53\%	75	34.3\%	58	48.8\%	40
Riverside - Sayler Park	43\%	27	16\%	11	26.3\%	15	8.5\%	14
Avondale	19\%	281	14\%	146	34.1\%	308	13.7\%	119
Walnut Hills	24\%	165	14\%	52	13.7\%	47	10.8\%	38
Sedamsville-Riverside	50\%	125	25\%	42	28.4\%	19	21.5\%	14
N. Fairmount-English Woods	37\%	174	14\%	54	18.2\%	50	25.6\%	60
S. Fairmount	47\%	144	37\%	83	18.9\%	45	9.8\%	30
Mt. Airy	10\%	51	7\%	26	0.0\%	0	0.0\%	0
2nd Quartile								
Bond Hill	13\%	97	53\%	75	11.0\%	69	14.6\%	77
Over-the-Rhine	45\%	319	31\%	148	31.4\%	154	11.6\%	22
Linwood	37\%	41	16\%	48	19.1\%	13	46.2\%	24
Winton Place	18\%	32	14\%	8	11.7\%	21	0.0\%	0
Carthage	40\%	59	28\%	27	40.8\%	40	0.0\%	0
Evanston	11\%	94	45\%	74	16.4\%	87	8.6\%	36
West End	18\%	172	28\%	207	25.4\%	125	4.8\%	12
Roselawn	13\%	33	4\%	8	23.7\%	75	23.5\%	178
Lower Price Hill	58\%	93	45\%	47	57.9\%	33	64.0\%	16
West Price Hill	14\%	195	9\%	78	12.6\%	112	5.2\%	55
Corryville	23\%	54	49\%	42	23.1\%	68	0.0\%	0
Mt. Auburn	21\%	179	31\%	68	19.6\%	107	4.2\%	17
3rd Quartile								
Kennedy Heights	11\%	57	5\%	17	13.0\%	37	16.1\%	98
University Heights	1\%	26	0\%	5	1.1\%	21	2.2\%	45
Fairview - Clifton	18\%	83	8\%	42	14.1\%	85	1.2\%	9
Westwood	15\%	246	19\%	251	16.5\%	281	14.7\%	180
Northside	33\%	293	26\%	172	24.0\%	101	12.5\%	44
Madisonville	16\%	133	37\%	92	14.0\%	91	3.9\%	26
Evanston - E. Walnut Hills	6\%	9	14\%	16	8.3\%	6	0.0\%	0
Hartwell	11\%	24	9\%	12	0.0\%	0	30.1\%	56
College Hill	12\%	135	12\%	100	8.2\%	75	10.0\%	74
N. Avondale - Paddock Hills	2.0\%	20	1\%	8	1.9\%	20	0.0\%	0
CBD - Riverfront	6.0\%	6	52\%	97	49.4\%	38	61.4\%	78

TABLE 6A
CINCINNATI NEIGHBORHOODS' DROp-OUT RATES, 1980 TO 2005-2009

Neighborhood	High School Drop-Out Rate								
	1980		1990		2000		2005-2009		
	Percent	Number	Percent	Number	Percent	Number	Percent	Number	
4th Quartile									
Oakley	20%	131	13%	51	20.7%	61	9.5%	21	
Sayler Park	22%	63	22%	37	25.6%	46	0.0%	0	
East End	36%	9	49%	67	11.1%	11	0.0%	0	
Mt. Washington	20%	121	14%	60	9.6%	48	0.0%	0	
Pleasant Ridge	18%	82	12%	56	2.4%	9	0.0%	0	
East Walnut Hills	14%	11	28%	31	13.8%	16	0.0%	0	
Clifton	16%	79	5%	18	15.1%	32	0.0%	0	
California	27%	13	50%	6	28.2%	11	0.0%	0	
Mt. Adams	0%	0	0%	0	0.0%	0	0.0%	0	
Mt. Lookout - Columbia Tusculum	15%	23	8%	13	0.0%	0	0.0%	0	
Hyde Park								0	
Mt. Lookout	4%	30	3%	14	1.7%	6	0.0%	0	

TAble 6b						
Neighborhood	High School Drop-Out Rate		Less Than High School Diploma		Functional Illiteracy Rate	
	Percent	Number	Percent	Number	Percent	Number
1st Quartile						
S. Cumminsville - Millvale	21\%	43	42\%	527	14\%	176
Fay Apartments	15\%	17	33\%	241	2\%	12
East Price Hill	22\%	296	35\%	3871	9\%	1018
Winton Hills	24\%	98	32\%	643	8\%	163
Camp Washington	49\%	40	44\%	433	12\%	115
Riverside - Sayler Park	8\%	14	23\%	218	7\%	65
Avondale	14\%	119	27\%	2104	6\%	490
Walnut Hills	11\%	38	30\%	1301	7\%	315
Sedamsville - Riverside	22\%	14	50\%	625	7\%	91
N. Fairmount - English Woods	26\%	60	39\%	668	8\%	128
S. Fairmount	10\%	30	27\%	518	9\%	177
Mt. Airy	0\%	0	22\%	1367	8\%	468
2nd Quartile						
Bond Hill	15\%	77	21\%	1103	6\%	306
Over-the-Rhine	12\%	22	29\%	810	2\%	59
Linwood	46\%	24	57\%	318	7\%	38
Winton Place	0\%	0	21\%	314	6\%	91
Carthage	0\%	0	23\%	364	8\%	120
Evanston	9\%	36	18\%	822	3\%	161
West End	5\%	12	29\%	1525	4\%	228
Roselawn	23\%	178	24\%	1711	7\%	514
Lower Price Hill	64\%	16	48\%	214	11\%	51
West Price Hill	5\%	55	19\%	2280	4\%	431
Corryville	0\%	0	9\%	129	3\%	37
Mt. Auburn	4\%	17	22\%	725	5\%	178
3rd Quartile						
Kennedy Heights	16\%	98	15\%	659	2\%	70
University Heights	2\%	45	14\%	528	2\%	86
Fairview - Clifton	1\%	9	13\%	443	6\%	204
Westwood	15\%	180	18\%	4719	4\%	1167
Northside	13\%	44	15\%	931	6\%	391
Madisonville	4\%	26	16\%	1322	3\%	253
Evanston - E. Walnut Hills	0\%	0	14\%	187	7\%	93
Hartwell	30\%	56	17\%	661	8\%	326
College Hill	10\%	74	13\%	1540	3\%	320
N. Avondale - Paddock Hills	0\%	0	14\%	511	5\%	176
CBD - Riverfront	61\%	78	23\%	716	4\%	142

TABLE 6B
CINCINNATI NEIGHBORHOODS: EdUCATION LEVEL OF ADULTS, 2005-2009

4th Quartile						
Oakley	10%	21	7%	728	2%	160
Sayler Park	0%	0	12%	296	7%	174
East End	0%	0	20%	227	8%	92
Mt. Washington	0%	0	12%	1290	4%	399
Pleasant Ridge	0%	0	7%	503	1%	90
East Walnut Hills	0%	0	12%	345	3%	100
Clifton	0%	0	7%	435	2%	102
California	0%	0	4%	30	0%	0
Mt. Adams	0%	0	2%	30	1%	17
Mt. Lookout-Columbia Tusculum	0%	0	5%	113	0%	0
Hyde Park	0%	0	1%	88	0%	27
Mt. Lookout	0%	0	0%	11	0%	0

The following is from the Fourth Edition. It is somewhat outdated but describes some important history:

The dropout rate for Cincinnati Public Schools (CPS) rose during the 1990s. In January 1996, the district's dropout rate was reported as a record 54.2 percent (citation 2). In May 2003 graduation rates had fallen to a low of 13% at one senior high school and the overall graduation rate was 60 percent (up from 47 percent in 1999, the year the census was taken). Even these dismal statistics do not reveal how bad the situation can be in some neighborhoods. The 2004 report cited a 73 percent loss of CPS students grades 9-12 in the Oyler attendance area (internal memo, author's files).

If the city wide dropout rate now approaches 40-50 percent, we believe that rates in some areas must be approaching 100 percent. Even in 1990, an analysis of block group data(3) showed that there were 9 block groups with 100 percent dropout rates. Seven were Appalachian areas (Over-The-Rhine tract 10, Linwood, Carthage, and East End) or Appalachian pockets in white areas (Westwood). Four additional block groups in Linwood, Camp Washington, and Northside had dropout rates of more than 70 percent. There were 32 block groups with dropout rates higher than 50 percent. These were about equally divided between Appalachian and African American areas.

The debate rages about how to fix the dropout problem in urban high schools. The future of cities may depend on its resolution. Educators often blame poverty or lack of parental involvement. Alternately, there are the disparities in state and local funding which allow the richest districts to spend more than $\$ 13,500$ per pupil while the poorest spend $\$ 3,500$. Critics of the schools blame school bureaucracy, teachers, unions, or the fact that schools are too large and impersonal to respond to the needs of today's students. Still others see the deterioration of

> Low-income Appalachian and African American areas show up in the two quartiles with darker shading (high rates of non-completion).

urban public schools as another manifestation of the growing bifurcation of society between an inner city abandoned by the affluent, corporations, and even churches and a suburbia that continues to expand and waste resources duplicating infrastructure which already exists in the core city.

Adult Education

Figure 8 shows concentrations of adults (over age 25) who have less than a high school education. This map, when compared to Figure 2, illustrates a high degree of correlation between education and socioeconomic status. Low-in-
Figure 8
Cincinnati Neighborhood Approximation 45. Westwood
46. Sedamsville - Riverside
47. Riverside - Sayler Park
48. Sayler Park
23. Madisonville
24. Pleasant Ridge
24. Pleasant Ridge
26. Hartwell
28. Roselawn
29. Bond Hill
30. N. Avondale - Pa
31. Avondale
32. Clifton
33. Winton Place
34. Northside
35. S. Cumminsvili
36. Winton Hills
37. College Hill
37. College Hill
3. Mt. Airy
6. Mt. Auburn
7. Faiview - Clitton Heights

1. Queensgate
2. CBD-Riverfront
3. Mu. Adams 8. Camp Washingon

[^3]39. Fay Aparments
41. S. Fairmount
42. Lower Price Hill
44. West Price Hill

\%
$\frac{1}{4}$
2005-2009 Cincinnati City Adult Education Levels

TABLE 6C											
Neighborhood	Less than High School Diploma					Percent Change 1970 to 2005-2009	Functional Illiteracy Rate				Percent Change 1980 to 2005-2009
	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$		1980	1990	2000	2005-2009	
1st Quartile											
S. Cumminsville-Millvale	83.0\%	72.0\%	59.0\%	49.4\%	41.8\%	-41.2\%	33.0\%	18.0\%	11.1\%	14.0\%	-19.0\%
Fay Apartments	50.0\%	41.0\%	53.0\%	44.3\%	33.2\%	-16.8\%	16.0\%	6.0\%	3.7\%	1.7\%	-14.3\%
East Price Hill	69.0\%	56.0\%	44.0\%	35.1\%	35.0\%	-34.0\%	30.0\%	14.0\%	9.2\%	9.2\%	-20.8\%
Winton Hills	72.0\%	50.0\%	44.0\%	36.1\%	31.7\%	-40.3\%	17.0\%	9.0\%	6.2\%	8.0\%	-9.0\%
Camp Washington	85.0\%	72.0\%	53.0\%	59.7\%	44.4\%	-40.6\%	51.0\%	22.0\%	25.6\%	11.8\%	-39.2\%
Riverside - Sayler Park	72.0\%	47.0\%	38.0\%	21.3\%	22.7\%	-49.3\%	11.0\%	11.0\%	2.9\%	6.8\%	-4.2\%
Avondale	65.0\%	55.0\%	46.0\%	35.4\%	26.6\%	-38.4\%	29.0\%	19.0\%	9.6\%	6.2\%	-22.8\%
Walnut Hills	72.0\%	62.0\%	43.0\%	42.4\%	30.2\%	-41.8\%	33.0\%	15.0\%	12.7\%	7.3\%	-25.7\%
Sedamsville - Riverside	81.0\%	68.0\%	56.0\%	46.4\%	49.9\%	-31.1\%	33.0\%	22.0\%	12.5\%	7.3\%	-25.7\%
N. Fairmount - English Woods	76.0\%	70.0\%	58.0\%	49.8\%	39.4\%	-36.6\%	43.0\%	20.0\%	9.0\%	7.5\%	-35.5\%
S. Fairmount	84.0\%	68.0\%	51.0\%	42.2\%	27.3\%	-56.7\%	37.0\%	22.0\%	14.3\%	9.3\%	-27.7\%
Mt. Airy	33.0\%	27.0\%	20.0\%	17.4\%	22.0\%	-11.0\%	22.0\%	5.0\%	4.5\%	7.5\%	-14.5\%
2nd Quartile											
Bond Hill	41.0\%	43.0\%	31.0\%	26.8\%	21.4\%	-19.6\%	20.0\%	10.0\%	5.2\%	5.9\%	-14.1\%
Over-the-Rhine	88.0\%	79.0\%	53.0\%	45.1\%	28.8\%	-59.2\%	47.0\%	19.0\%	8.8\%	2.1\%	-44.9\%
Linwood		70.0\%	57.0\%	48.0\%	56.9\%	56.9\%	41.0\%	26.0\%	19.6\%	6.8\%	-34.2\%
Winton Place	66.0\%	32.0\%	39.0\%	24.3\%	21.3\%	-44.7\%	26.0\%	13.0\%	5.0\%	6.2\%	-19.8\%
Carthage	76.0\%	59.0\%	48.0\%	35.6\%	22.8\%	-53.2\%	37.0\%	20.0\%	8.5\%	7.5\%	-29.5\%
Evanston	69.0\%	54.0\%	42.0\%	36.6\%	17.8\%	-51.2\%	28.0\%	14.0\%	9.3\%	3.5\%	-24.5\%
West End	83.0\%	75.0\%	58.0\%	45.1\%	29.0\%	-54.0\%	41.0\%	20.0\%	9.1\%	4.3\%	-36.7\%
Roselawn	32.0\%	32.0\%	25.0\%	21.7\%	23.7\%	-8.3\%	29.0\%	8.0\%	6.5\%	7.1\%	-21.9\%
Lower Price Hill	85.0\%	77.0\%	70.0\%	62.0\%	47.8\%	-37.2\%	53.0\%	27.0\%	25.0\%	11.4\%	-41.6\%
West Price Hill	53.0\%	40.0\%	31.0\%	21.2\%	18.8\%	-34.2\%	20.0\%	9.0\%	4.9\%	3.5\%	-16.5\%
Corryville	61.0\%	43.0\%	33.0\%	24.4\%	9.2\%	-51.8\%	22.0\%	14.0\%	5.3\%	2.6\%	-19.4\%
Mt. Auburn	69.0\%	50.0\%	36.0\%	28.0\%	22.2\%	-46.8\%	27.0\%	11.0\%	3.5\%	5.5\%	-21.5\%

TABLE 6C											
Neighborhood	Less than High School Diploma					Percent Change 1970 to 2005-2009	Functional Illiteracy Rate				Percent Change 1980 to 2005-2009
	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$		1980	1990	2000	2005-2009	
3rd Quartile											
Kennedy Heights	39.0\%	29.0\%	23.0\%	15.2\%	15.4\%	-23.6\%	10.0\%	5.0\%	3.0\%	1.6\%	-8.4\%
University Heights	49.0\%	26.0\%	17.0\%	17.5\%	13.9\%	-35.1\%	15.0\%	8.0\%	5.9\%	2.3\%	-12.7\%
Fairview-Clifton	72.0\%	41.0\%	22.0\%	16.0\%	12.8\%	-59.2\%	25.0\%	10.0\%	3.3\%	5.9\%	-19.1\%
Westwood	49.0\%	37.0\%	24.0\%	18.9\%	18.0\%	-31.0\%	16.0\%	8.0\%	4.3\%	4.4\%	-11.6\%
Northside	68.0\%	54.0\%	40.0\%	25.6\%	15.2\%	-52.8\%	32.0\%	13.0\%	7.4\%	6.4\%	-25.6\%
Madisonville	57.0\%	51.0\%	34.0\%	20.2\%	16.3\%	-40.7\%	24.0\%	10.0\%	5.6\%	3.1\%	-20.9\%
Evanston-E. Walnut Hills	60.0\%	47.0\%	34.0\%	23.8\%	13.8\%	-46.2\%	26.0\%	9.0\%	4.9\%	6.8\%	-19.2\%
Hartwell	58.0\%	38.0\%	31.0\%	19.0\%	17.0\%	-41.0\%	22.0\%	12.0\%	5.9\%	8.4\%	-13.6\%
College Hill	39.0\%	31.0\%	20.0\%	17.4\%	12.8\%	-26.2\%	4.0\%	6.0\%	3.9\%	2.7\%	-1.3\%
N. Avondale-Paddock Hills	31.0\%	21.0\%	15.0\%	14.5\%	14.0\%	-17.0\%	8.0\%	3.0\%	2.6\%	4.8\%	-3.2\%
CBD-Riverfront	53.0\%	33.0\%	23.0\%	25.1\%	22.7\%	-30.3\%	19.0\%	7.0\%	9.3\%	4.5\%	-14.5\%
4th Quartile											
Oakley	58.0\%	41.0\%	23.0\%	16.3\%	6.8\%	-51.2\%	21.0\%	8.0\%	4.8\%	1.5\%	-19.5\%
Sayler Park	56.0\%	41.0\%	27.0\%	19.7\%	11.5\%	-44.5\%	17.0\%	7.0\%	3.8\%	6.8\%	-10.2\%
East End	85.0\%	72.0\%	65.0\%	43.9\%	19.8\%	-65.2\%	45.0\%	22.0\%	12.6\%	8.0\%	-37.0\%
Mt. Washington	33.0\%	26.0\%	17.0\%	11.3\%	11.6\%	-21.4\%	10.0\%	5.0\%	3.0\%	3.6\%	-6.4\%
Pleasant Ridge	37.0\%	27.0\%	21.0\%	14.5\%	7.2\%	-29.8\%	11.0\%	8.0\%	4.9\%	1.3\%	-9.7\%
East Walnut Hills	42.0\%	26.0\%	21.0\%	14.5\%	11.6\%	-30.4\%	14.0\%	7.0\%	3.3\%	3.4\%	-10.6\%
Clifton	30.0\%	16.0\%	9.0\%	9.1\%	7.4\%	-22.6\%	9.0\%	4.0\%	2.2\%	1.7\%	-7.3\%
California	83.0\%	44.0\%	36.0\%	12.9\%	3.7\%	-79.3\%	21.0\%	10.0\%	3.0\%	0.0\%	-21.0\%
Mt. Adams	55.0\%	19.0\%	7.0\%	5.6\%	1.8\%	-53.2\%	6.0\%	2.0\%	0.0\%	1.0\%	-5.0\%
Mt. Lookout - Columbia Tusculum			15.0\%	5.6\%	4.7\%	4.7\%	12.0\%	4.0\%	1.2\%	0.0\%	-12.0\%
Hyde Park	28.0\%	15.0\%	7.0\%	4.1\%	0.8\%	-27.2\%	7.0\%	2.0\%	1.2\%	0.2\%	-6.8\%
Mt. Lookout	24.0\%	9.0\%	4.0\%	1.8\%	0.4\%	-23.6\%	5.0\%	1.0\%	0.0\%	0.0\%	-5.0\%

TABLE GD-1
TEN CENSUS TRACTS With the Highest RATE OF ADULTS Without A Hich School Diploma,
2000-2009

Rank	Predominant Ethnic Composition	Census Tract	Neighborhood	Number of Adults Without HS Diploma	Percent in $\mathbf{2 0 0 0}$	Percent in $\mathbf{2 0 0 9}$
1	White Appalachian	47.02	Linwood	318	48.0%	56.9%
2	White Appalachian	103	Sedamsville-Riverside	625	46.4%	49.9%
3	White Appalachian	91	Lower Price Hill	214	62.0%	47.8%
4	White Appalachian	87	South Fairmount	348	46.7%	47.5%
5	African American	16	Over-the-Rhine	404	48.6%	45.8%
6	White Appalachian	28	Camp Washington	433	59.7%	44.4%
7	White	92	East Price Hill	1,361	34.6%	42.1%
8	African American	77	S. Cumminsville - Mill- vale	527	49.4%	41.8%
9	African American	36	Walnut Hills	332	53.1%	41.1%
10	African American	35	Walnut Hills	184	52.9%	39.7%

come Appalachian and African American areas show up in the two quartiles with darker shading (high rates of non-completion).
Of the ten neighborhoods with the highest rate of non-high school completion, (Table 6c) four were predominantly white Appalachian and five were predominantly African American. Eight of these neighborhoods showed improvement in the rate of high school completion since 2000 but Linwood's and SedamsvilleRiverside's rates of non-completion went up in 2005-2009. The neighborhoods with high dropout rates should be a key target area for expanded adult education programs. Beyond that, all of the areas in red or dark pink on Figure 8 are areas of very high need where from 29 to 57 percent of the adult population lack a high school education.

Table 6 b shows the percent of adults without a high school diploma by the neighborhood and SES quartile. Within SES I noncompletion rates range between 22 percent for Mt. Airy to 50 percent for Sedamsville-Riverside. In SES II the range is from 9 percent for Corryville to 57 percent for Linwood. In SES III the range is from 13 percent in Fairview-Clifton Heights to 23 percent in CBD-Riverfront. Progress can be measured by comparing rates for the neighborhoods for 1970 and 2000 in Table 6c. Some of
the highest rates in 1970 were Over-the-Rhine (88\%), East End (85\%) and South Cummins-ville-Millvale (83\%).

From 1990 to 2000 every neighborhood but Camp Washington saw improvement in adult education levels. From 2000 through 20052009, adult education levels continued to improve but seven neighborhoods saw an increase in the percentage of adults without a high school education (education index). These were Riverside-Sayler Park (to 22.7), SedamsvilleRiverside (to 49.9), Mt. Airy (to 22.0), Linwood (to 56.9), Roselawn (to 23.7), Kennedy Heights (to 15.4) and Mt. Washington (to 11.6). The overall perspective, however, is that the education levels of Cincinnatians have improved greatly since 1970 .
Census and ACS Survey data may be giving us too benign a picture however. As we enter the second decade of this century, the Schott Foundation for Public Education's 2010 Yes We Can study reports a 33 percent graduation rate for black males and a 54 percent graduation rate for white males for Cincinnati. The data is for the 2007-8 school year.

Social Areas of Cincinnati

Table 6d-2 Ten Neighborhoods with Highest Rates of Non-High School Completion, 2005- 2009
Rank

$2005-2009$
:---
2
3
4
5
6
7
8
9
10
a Queensgate has a high school non-completion rate of 31.1\%

Functional illiteracy defined as persons with an eighth grade education or less, is also high-

Chapter 6 | Education in Cincinnati

lowest rate of functional illiteracy. Those interested in targeting adult education can either use census tract or block group data to manage data distribution in the metro area or use the SES I area in Figure 13 as an approximation.

SMSA in this chapter refers to the metropoli\tan area as defined in 1970 - the Ohio counties of Hamilton, Warren and Clermont, the Kentucky counties of Kenton, Campbell and Boone and Dearborn County in Indiana.

> Table $6 e$ shows that adult education levels are improving in both the central city and in the SMSA, though somewhat more rapidly in the latter.
est in Campbell County. Kenton County has the second highest rate. Hamilton County with 19,328 persons in this category has the second

Area	Percent High School Graduates (25 Years and Older)					Dropout Rates (16 to 19 Years Old)			
	1970	1980	1990	2000	2005-2009	1980	1990	2000	2005-2009
Cincinnati	50.9\%	57.9\%	80.7\%	77.0\%	82.4\%	18.0\%	13.8\%	16.3\%	8.6\%
SMSA	48.4\%	63.3\%	84.2\%	83.0\%	87.3\%	13.1\%	10.3\%	9.7\%	5.4\%

Functional I lliteracy

Tables 6 b and 6 c as well as Figure 9 show the distribution of functional illiteracy. Since the census bureau provides no precise definition of functional illiteracy an eighth grade education level is commonly used as a surrogate variable. There are of course many persons with eighth grade education who can read newspapers, fill out job applications and read directions on medicine bottles. These are the skills lacked by the functionally illiterate. (Unfortunately there are also some persons with more than one year of high school who lack these skills). The functional illiteracy distribution is similar to that of dropouts and adult education. Hence the eighth grade cutoff is reasonably useful.

> From 2000 through 2005-2009, adult education levels continued to improve but seven neighborhoods saw an increase in the percentage of adults without a high school education (education index).

Note the highest rates are in South Cummins-ville-Millvale, Lower Price Hill, Camp Washington, and East Price Hill.

Education as a Metropolitan Concern

One of the major reasons that education is a concern for the entire Cincinnati region is that regional prosperity is ultimately dependent upon the education and the skills of the labor force. Another reason is the presumed relationship between education and the maintenance of quality of our democratic institutions and related personal quality of life.

Table 6e shows that adult education levels are improving in both the central city and in the SMSA, though somewhat more rapidly in the latter. Table 11 g shows the trend of 16-19 year old dropouts and those who are 25 without a high school diploma. Kenton County with 575 dropouts had both the highest number of dropouts outside Hamilton County and the highest rate of all the counties. Clearly the dropout problem is not confined to the city of Cincinnati. In 2005-2009 as in other decades the major-
ity of dropouts in the seven county region lived in Hamilton County.
The same can be said regarding the distribution of persons over 25 without a high school diploma. The highest rate of non-completion was in Campbell County and the second highest was in Clermont County. As with dropouts the highest absolute numbers of persons without a diploma reside in Hamilton County.
Functional illiteracy defined as persons with an eighth grade education or less, is also highest in Campbell County. Kenton County has the second highest rate. Hamilton County with 19,328 persons in this category has the second lowest rate of functional illiteracy. Those interested in targeting adult education can either use census tract or block group data to manage data distribution in the metro area or use the SES I area in Figure 13 as an approximation.
SMSA in this chapter refers to the metropolitan area as defined in 1970 - the Ohio counties of Hamilton, Warren and Clermont, the Kentucky counties of Kenton, Campbell and Boone and Dearborn County in Indiana.
Table 6e shows that adult education levels are improving in both the central city and in the SMSA, though somewhat more rapidly in the latter. Table 11 g shows the trend of $16-19$ year old dropouts and those who are 25 without a high school diploma. Kenton County with 575 dropouts had both the highest number of dropouts outside Hamilton County and the highest rate of all the counties. Clearly the dropout problem is not confined to the city of Cincinnati. In 2005-2009 as in other decades the majority of dropouts in the seven county region lived in Hamilton County.
The same can be said regarding the distribution of persons over 25 without a high school diploma. The highest rate of non-completion was in Campbell County and the second highest was in Clermont County. As with dropouts the highest absolute numbers of persons without a diploma reside in Hamilton County.
Figure 9

2005-2009 Cincinnati City Functional IIIIteracy Levels

Chapter 7

The Elderly and Children

The elderly can be looked at as a distinct subgroup of our population that has needs which often cut across lines of race and social class. Most elderly people in an industrial society face the problem of how to spend their time in a constructive, fulfilling way. When poverty and its accompanying
lack of personal and neighborhood resources compound this crisis, life can become difficult

$$
\begin{aligned}
& \text { So Cincinnati may } \\
& \text { be aging once again } \\
& \text { if the ACS data are } \\
& \text { reliable with this age } \\
& \text { group. }
\end{aligned}
$$ chapter we will consider the aged population as a specific target group which should be taken into account in the planning of services. Further research is needed to identify the subgroups of this population whose needs are the most critical(1). The main purpose here is to detail the geographic distribution of the population over 60 years of age.

Almost one Cincinnatian in eight is over 60. During the 70s, the elderly population declined at a dramatically slower rate (9 percent) than the overall population (15 percent). This trend toward an aging Cincinnati population reversed during the 1980s and the numbers for 1970 through 2005-2009 show the city population declining by 24.8% and elderly population declining by 33.4 percent (Table 2d). The percentage of the population that is elderly declined from 16.7 to 13.1 in SES I and II, the two lower SES quartiles, between 1970 and 20052009. In SES I only 14 percent of the population was over 60 in 2005-2009 compared to 19% in SES III (Table 2b). Almost sixty-three (62.8) percent of the elderly lived in SES III and IV in 2005-2009. Table 7a presents the percentage of seniors of the total population of each quartile. Comparing 1970's and 2000's percentages show that the most notable change is the increase in elderly percentage in SES III, the upper middle quartile. In the most recent
decade the percent elderly increased in all four quartiles reversing the 1980-2000 trend. So Cincinnati may be aging once again if the ACS data are reliable with this age group. The following section on poverty supports the idea that the percentage elderly in poor neighborhoods might be increasing.

Poverty and the Elderly in 20052009

What we predicted for this decade did not happen, at least according to the 2005-2009 ACS data. A look at Figure 10 shows more correspondence in the geographic distribution of poverty and the elderly. There are many more areas of overlap between high concentrations of elderly and poverty than we saw on the 2000 map. Table 7a shows that the number of elderly declined in SES IV, stayed about the same in SES II and rose in SES I and III.

Table 7b shows trends by neighborhood. In SES I the biggest changes were increases in the percent elderly in Camp Washington (11) North Fairmount-English Woods (3) and Riv-erside-Sayler Park (3). Five SES I neighborhoods had declines of 1 to 3 percent. In SES II, Carthage and Evanston saw significant

> There are many more areas of overlap between high concentrations of elderly and poverty than we saw on the 2000 map. Table 7a shows that the number of elderly declined in SES IV, stayed about the same in SES II and rose in SES I and III

increases. Lower Price Hill, Roselawn, West Price Hill, and Corryville saw a significant negative shift on this variable. Most of the SES III and IV neighborhoods saw changes of less than 2 percent. Evanston-East Walnut Hills, Sayler Park, East End, Oakley and East Walnut Hills became more elderly by 4 percent or more.

Figure 7c shows these figures not as percent-
age points but the percentage of change. High gainers were California, Camp Washington, Sayler Park, Oakley, Mt. Adams, Carthage, Mt. Lookout, East End, and East Walnut Hills.

Table 7b shows trends by neighborhood. In SES I seven of the 12 neighborhoods had a lower percent elderly in 2005-2009. The largest concentrations are in Avondale, East Price Hill, Walnut Hills, and Mt. Airy. In SES II eight of 12 neighborhoods had lower percent elderly. The largest concentrations were in West Price Hill, Roselawn, Evanston, Bond Hill, and West End. In SES III six neighborhoods lost in percent elderly in 2005-2009. Two of Cincinnati's largest concentrations are in this area: Westwood $(6,025)$ and College Hill $(3,616)$. This may indicate the presence of nursing homes in these neighborhoods but it also reflects overall population size. In SES IV the overall percent elderly has declined but Oakley, Hyde Park, and Mt. Wash-

> The percent elderly rose from 12.7 percent in 2000 to 15.8 in $2005-2009$ (Table 2d). ington still have large numbers of elderly. Oakley and Clifton had 20 percent or more elderly in 2005-2009.

Is Cincinnati aging? Table 2d shows a decline in both number and percent elderly between 1970 and 2005-2009. But in the 2005-2009 period the trend was reversed to show that the short-term trend is towards an aging city. The percent elderly rose from 12.7 percent in 2000
to 15.8 in 2005-2009 (Table 2d).
The trend toward an increasingly greater proportion of our population being elderly will continue at least in a metropolitan context. Community services must be innovative and comprehensive to meet the challenges of our aging population. The city as a whole needs to develop a greater sensitivity to the rights, needs, and resources of our older people in order to keep them as full members of our social networks. They have much to contribute and should not be perceived merely as one more "needy group". Community leaders can use the data in this chapter to plot the evolving patterns of the elderly population and their needs. The elderly are now heavily concentrated in the two upper SES areas perhaps leaving a dearth of mentors in the inner city.

The Children

In the past two decades, the number of children under 16 has declined from 82,988 in 1970 to 67,164 (see Fourth Edition). Cincinnati's children (under 5) are perhaps less concentrated in poverty areas (Figure 11) than in 1990. 31.9 percent live in SES I. The largest concentrations of children and youth (under 18) in SES I are in East Price Hill $(6,031)$, Avondale $(4,271)$, Mt. Airy $(3,020)$, and Walnut Hills $(1,477)$ (Table 7e).

Most of the neighborhoods in SES I have percentages of children and youth of 25 percent or more. Several are in the 30-40 percent range. Several SES II neighborhoods have very high

Table 7a
TRENDS IN THE POPULATION OVER 60 Years of Age, 1970-2009

Social Area	Number of Persons 60 Years of Age and Older					Percent of Total Over 60 Population				
	1970	1980	1990	2000	$\begin{array}{\|l\|} \hline 2005- \\ 2009 \\ \hline \end{array}$	1970	1980	1990	2000	$\begin{array}{\|l\|} \hline 2005- \\ 2009 \\ \hline \end{array}$
1st Quartile	13,346	10,432	11,082	8,043	9,543	16\%	14\%	17\%	15\%	18\%
2nd Quartile	20,686	15,186	16,829	10,508	10,477	26\%	21\%	26\%	20\%	19\%
3rd Quartile	15,930	19,200	18,743	16,997	18,052	20\%	27\%	29\%	32\%	34\%
4th Quartile	31,075	27,212	18,674	17,323	15,741	38\%	38\%	29\%	33\%	29\%
Total	81,037	72,030	65,328	52,871	53,813	100\%	100\%	101\%a	100\%	100\%

Figure 10

Table 7B
Cincinnatin
Percent Change Number of Persons 60 Years＋

\circ 0 N N 0	$\underset{\sim}{\underset{N}{N}}$	$\begin{array}{\|c\|} \hline \stackrel{\circ}{\overleftarrow{7}} \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & \stackrel{n}{7} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{3}{1} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ N \\ N \end{array}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & 0 \\ & \text { o } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\left\lvert\, \begin{aligned} & i-1 \\ & n \\ & \underset{7}{7} \end{aligned}\right.$	$\begin{array}{\|c} \stackrel{\infty}{\mathrm{m}} \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ \text { n } \end{array}$	$$	$$	$\begin{array}{l\|} \hline 0 \\ \infty \\ + \\ i \end{array}$	앙	$\begin{array}{\|l\|} \hline \text { ㄴㅇ } \\ 0 \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{N}$	\hat{i}	$\begin{aligned} & 10 \\ & \infty \\ & 0 \\ & \cdots \end{aligned}$	$$	$$	\mathfrak{N}	$\begin{aligned} & \text { on } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{array}{\|c} \underset{\infty}{\infty} \\ \stackrel{n}{2} \end{array}$
$\begin{aligned} & \underset{\sim}{O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ol } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \infty_{1} \end{array}$	$\begin{aligned} & \hline 0 \\ & \stackrel{0}{2} \\ & m \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \text { ò } \\ & m \end{aligned}$	广े	$\begin{aligned} & \hline \text { o̊ } \\ & \text { ị } \end{aligned}$	$$	$\stackrel{\circ}{\ddagger}$	$\begin{aligned} & 00 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \underset{\sim}{2} \\ & \underset{7}{ } \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{~m} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 유 } \\ \text { ị } \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \text { up } \\ & \hline \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & n \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$$	$\begin{aligned} & \text { ơ } \\ & \text { on } \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \stackrel{0}{0} \\ & 7 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \text { oి } \\ & \text { ใి? } \end{aligned}$	$\stackrel{\rightharpoonup}{\dagger}$
$\begin{aligned} & \text { O} \\ & \hline \mathbf{N} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \text { ô } \\ & m \end{aligned}$	$\begin{array}{l\|} \hline 0 \\ \infty \\ \sim \\ \sim \end{array}$	ò	$\stackrel{\circ}{1}$	$\begin{array}{\|c} \stackrel{\circ}{2} \\ \stackrel{\rightharpoonup}{n} \end{array}$	$\stackrel{0}{\mathrm{o}}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \mathrm{O} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \hline 0 \\ & \hline \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{1} \end{aligned}$	$\begin{aligned} & \text { o? } \\ & \text { ị } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{7} \end{aligned}$	$\begin{array}{\|c\|} \hline \stackrel{\circ}{\circ} \\ \stackrel{1}{r} \\ \hline \end{array}$	$\begin{gathered} \hline 0 \\ \stackrel{0}{n} \\ \underset{1}{2} \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ \underset{1}{\prime} \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \underset{1}{1} \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ \mathrm{~m} \\ \hline \end{array}$	ô	$\begin{aligned} & \hline 0 \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\text { ®}}{1}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{+} \\ & +1 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$
응	$\begin{aligned} & \stackrel{\circ}{+} \\ & \underset{~}{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{1}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { 人े } \end{aligned}$	$\begin{aligned} & \text { 육 } \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \stackrel{0}{7} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{o}} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\stackrel{\circ}{4}}{\stackrel{1}{2}}$	$\begin{gathered} c_{0}^{0} \\ \infty_{1} \end{gathered}$	$\begin{aligned} & \text { ơ } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { aे } \end{aligned}$	$\stackrel{\circ}{\mathrm{r}}$	ô	बু	$\begin{array}{\|c} \hline \stackrel{\circ}{4} \\ \underset{\sim}{n} \end{array}$	$\begin{aligned} & \circ \\ & + \\ & + \end{aligned}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{2} \\ \underset{\sim}{n} \end{array}$	$\begin{aligned} & 0 \\ & 60 \\ & 7 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \underset{N}{1} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { Ǹ } \end{aligned}$		$\stackrel{\rightharpoonup}{2}$	$\begin{aligned} & \text { ơ } \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$
욕	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \text { N } \end{aligned}$	$\left.\begin{array}{\|c\|} \hline 0 \\ \hat{n} \\ \square \end{array} \right\rvert\,$	$\stackrel{\circ}{\mathrm{o}}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \infty_{1} \\ & \infty_{1} \end{aligned}$	$\begin{array}{\|c} \stackrel{\circ}{\mathrm{N}} \\ \mathrm{~m} \end{array}$	ọ	$\begin{aligned} & { }_{2}^{0} \\ & \overrightarrow{7} \end{aligned}$	$\begin{array}{\|c} \text { 유 } \\ \text { 구 } \end{array}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{1} \end{aligned}$	$$	o̊	$\begin{aligned} & { }^{\circ} \\ & \stackrel{3}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{4} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\substack{2}}$	$\stackrel{\rightharpoonup}{\wedge}$	$\begin{aligned} & 0 \\ & { }_{7}^{2} \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \underset{\sim}{7} \end{aligned}$	के	$\begin{aligned} & 0 \\ & 6 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { in } \\ & \text { N1 } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$	$\stackrel{\text { ®}}{\text { ® }}$	$\stackrel{\rightharpoonup}{\mathrm{i}}$
$\begin{aligned} & 0 \\ & \underset{\sim}{1} \\ & \underset{1}{2} \end{aligned}$	oे	$\begin{array}{\|c} \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{2} \end{array}$	$\begin{aligned} & \hline 0 \\ & \underset{\sim}{0} \\ & \underset{T}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{4} \\ & \hline 6 \end{aligned}$	$\stackrel{\circ}{\mathrm{c}}$	$\underset{\text { N}}{\stackrel{\rightharpoonup}{1}}$	$\begin{array}{\|c} \stackrel{\circ}{\mathrm{N}} \\ \stackrel{1}{2} \end{array}$	$\stackrel{\rightharpoonup}{\circ}$	$\begin{aligned} & 00 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { a } \end{aligned}$	oे	$\stackrel{\mathrm{O}}{\mathrm{~N}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$$		ㅇํ	$\begin{aligned} & 0 \\ & \frac{0}{7} \\ & 7 \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \mathrm{m} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	oे	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\top} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$
$\begin{aligned} & \text { O} \\ & \hline \mathbf{N} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{\|c\|} \hline \circ \\ \infty \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \underset{7}{7} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \stackrel{7}{7} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{4} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 20 \\ & 0 \\ & 1 \\ & n \end{aligned}$	$\begin{aligned} & 00 \\ & \infty \\ & \rightarrow 1 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \text { a } \\ & \underset{7}{7} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{i} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	oे	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{m}{\sim} \end{aligned}$	ơ	$\begin{aligned} & \mathrm{o} \\ & \mathrm{i} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{\circ}{\mathrm{N}} \\ \text { Nे } \end{array}$	$\begin{aligned} & \text { oㅇ } \\ & \stackrel{0}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$	ô	$\begin{aligned} & \text { 号 } \\ & \underset{i}{2} \end{aligned}$
$\begin{aligned} & \mathrm{O} \\ & \hline \mathbf{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \overrightarrow{7} \\ & 7 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{2} \end{aligned}$	oे	$\begin{aligned} & \hline 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 2 \\ & \underset{7}{7} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{array}{\|c} \hline \stackrel{\circ}{2} \\ \stackrel{\rightharpoonup}{n} \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \infty \end{aligned}$	$$	$$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\stackrel{\text { か? }}{\substack{2}}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{\circ}{n} \\ \stackrel{1}{2} \end{array}$	$\begin{aligned} & \text { oे } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { - } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text {-1 } \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{7}{7} \end{aligned}$
备	$\begin{aligned} & \mathrm{o} \\ & \mathrm{~N} \end{aligned}$	ô		ô	$\begin{array}{\|c} \stackrel{\circ}{4} \\ \underset{\sim}{4} \end{array}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{array}{\|c} \stackrel{\circ}{N} \\ \text { N } \end{array}$	$\begin{aligned} & 0_{2}^{0} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { Oे } \end{aligned}$	oे	$\begin{aligned} & \hline \stackrel{?}{\mathrm{~m}} \\ & \stackrel{n}{7} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{~m} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { oे } \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \overrightarrow{7} \end{array}$	$\begin{array}{\|c} \hline \stackrel{2}{\mathrm{~N}} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & 20 \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\text { O}}{\underset{\sim}{4}} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ò } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{f}} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{\circ}{0} \\ \text { n} \end{array}$
$\begin{aligned} & 0 \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{0}{n} \\ \mathrm{~m} \end{array}$	$$	$\begin{aligned} & 0 \\ & 0^{\circ} \\ & \sim \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 20 \\ & 0^{\circ} \\ & \sim \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{gathered} \text { O} \\ \text { N } \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\mathrm{n}} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \text { ô } \\ & \text { - } \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{\circ}{\mathrm{o}} \\ \mathrm{~m} \end{array}$	$\begin{gathered} \stackrel{\rightharpoonup}{\circ} \\ \stackrel{\rightharpoonup}{n} \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\mathrm{N}} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { д̀ } \\ & \stackrel{n}{n} \end{aligned}$	$\begin{array}{\|c} \hline \stackrel{Q}{2} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \stackrel{n}{7} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \stackrel{0}{n} \\ \underset{N}{2} \end{array}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{array}{\|c} \hline \stackrel{\rightharpoonup}{\mathrm{m}} \\ \text { N } \end{array}$	$\begin{array}{\|c} \hline \stackrel{\circ}{+} \\ \text { m } \end{array}$	$\begin{array}{\|l} \hline \stackrel{0}{n} \\ \mathrm{~m} \end{array}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\stackrel{\circ}{\dot{\sim}}$	$\stackrel{\text { ¢ }}{+}$
$\begin{aligned} & 0 \\ & \stackrel{0}{9} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ \infty \\ \infty \end{array}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \end{aligned}$	ol	$\begin{array}{\|l} \hline \text { O} \\ \stackrel{0}{2} \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\circ}{i}$	$\stackrel{\circ}{\stackrel{\circ}{N}}$	$\begin{aligned} & \hline \stackrel{\varrho}{4} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \underset{7}{7} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ \stackrel{\rightharpoonup}{\mathrm{~N}} \end{array}$	！	$\begin{aligned} & \hline \stackrel{\circ}{4} \\ & \underset{~}{4} \end{aligned}$	$\begin{aligned} & 2 \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{N} \\ & \stackrel{1}{N} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{\circ}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { Nे } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$

Neighborhood	Percent of Population 60 Years and Older				
	$\mathbf{1 9 7 0}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5 - 2 0 0 9}$
1st Quartile					
S．Cumminsville－Millvale	12%	13%	12%	11%	8%
Fay Apartments	8%	5%	6%	6%	8%
East Price Hill	17%	15%	14%	11%	11%
Winton Hills	8%	13%	6%	9%	11%
Camp Washington	15%	15%	14%	8%	19%
Riverside－Sayler Park	15%	15%	19%	11%	14%
Avondale	17%	22%	22%	19%	16%
Walnut Hills	24%	23%	21%	19%	18%
Sedamsville－Riverside	14%	16%	20%	21%	20%
N．Fairmount－English Woods	11%	13%	10%	8%	11%
S．Fairmount	21%	19%	13%	12%	12%
Mt．Airy	12%	12%	13%	14%	15%
2nd Quartile					
Bond Hill	22%	17%	20%	22%	21%
Over－the－Rhine	20%	19%	11%	7%	9%
Linwood	---	17%	22%	12%	13%
Winton Place	14%	15%	14%	8%	9%
Carthage	21%	23%	21%	17%	25%
Evanston	14%	22%	24%	19%	23%
West End	21%	23%	21%	16%	15%
Roselawn	25%	34%	29%	22%	17%
Lower Price Hill	12%	13%	10%	8%	10%
West Price Hill	20%	22%	22%	16%	12%
Corryville	17%	14%	14%	10%	6%
Mt．Auburn	12%	14%	13%	11%	11%

TABLE 7B											
Neighborhood	Percent of Population 60 Years and Older						Percent Change Number of Persons 60 Years +				
	1970	1980	1990	2000	2005-2009	1970-1980	1980-1990	1990-2000	2000-2009	1970-2009	2005-2009
3rd Quartile											
Kennedy Heights	16\%	17\%	21\%	24\%	22\%	3\%	26\%	12\%	4\%	36\%	1,375
University Heights	10\%	8\%	6\%	7\%	5\%	-12\%	-24\%	11\%	-30\%	-43\%	444
Fairview - Clifton	19\%	15\%	9\%	6\%	5\%	-21\%	-40\%	-27\%	-3\%	-71\%	425
Westwood	21\%	23\%	21\%	16\%	16\%	10\%	-9\%	-22\%	4\%	-23\%	6,025
Northside	20\%	19\%	17\%	13\%	16\%	-5\%	-13\%	-24\%	9\%	-19\%	1,344
Madisonville	19\%	20\%	18\%	17\%	16\%	3\%	-10\%	-3\%	-6\%	-19\%	1,794
Evanston - E. Walnut Hills	19\%	21\%	22\%	18\%	24\%	13\%	5\%	-19\%	16\%	28\%	431
Hartwell	16\%	22\%	24\%	23\%	21\%	37\%	6\%	-5\%	-9\%	29\%	1,143
College Hill	20\%	27\%	23\%	23\%	21\%	37\%	-16\%	1\%	-3\%	8\%	3,616
N. Avondale - Paddock Hills	15\%	14\%	15\%	16\%	12\%	-5\%	5\%	9\%	9\%	-19\%	1,055
CBD - Riverfront	35\%	39\%	19\%	16\%	11\%	12\%	-51\%	-19\%	-14\%	-70\%	400
4th Quartile											
Oakley	22\%	24\%	23\%	20\%	24\%	9\%	-5\%	-14\%	45\%	11\%	3,179
Sayler Park	15\%	16\%	13\%	15\%	19\%	7\%	-19\%	20\%	48\%	27\%	707
East End	13\%	15\%	16\%	14\%	19\%	14\%	3\%	-9\%	34\%	46\%	334
Mt. Washington	15\%	22\%	22\%	19\%	20\%	42\%	4\%	-15\%	17\%	31\%	3,117
Pleasant Ridge	24\%	23\%	19\%	15\%	16\%	-1\%	-19\%	-21\%	14\%	-30\%	1,556
East Walnut Hills	22\%	23\%	24\%	23\%	30\%	4\%	9\%	-7\%	32\%	38\%	1,083
Clifton	20\%	19\%	18\%	16\%	18\%	-3\%	-7\%	-8\%	14\%	-7\%	1,590
California	16\%	17\%	12\%	14\%	15\%	8\%	-31\%	19\%	69\%	0\%	199
Mt. Adams	13\%	15\%	15\%	18\%	18\%	14\%	-1\%	23\%	44\%	35\%	348
Mt. Lookout - Columbia Tusculum	---	17\%	11\%	13\%	13\%	----	-37\%	22\%	2\%	-	409
Hyde Park	23\%	24\%	21\%	17\%	17\%	3\%	-11\%	-19\%	16\%	-25\%	2,677
Mt. Lookout	17\%	16\%	15\%	12\%	13\%	-7\%	-3\%	-19\%	38\%	-21\%	542
City Total		Quar	ile 1	Quart	ile 2	Quartile 3		Quartile 4		Total	
Number of Persons 60 Years and Over			9,543		10,477		18,052		15,741		53,813
Percentage of Population 60 Years and Over			14\%		15\%		16\%		19\%		16\%

numbers of children and youth (population under 18 years of age). These are West End $(2,214)$, West Price Hill $(5,756)$, Bond Hill (1,652), Evanston (1,821), Roselawn $(1,363)$,

The elderly are now heavily
concentrated in the two upper SES areas perhaps leaving a dearth of mentors in the inner city.
and Over-the-Rhine (1,386). Neighborhoods with high percentages or numbers of children and youth in SES I and II are likely to have high crime rates and have a special need for youth services and programs such as day care and after school programs. In SES III, Westwood (8,416), College Hill $(3,641)$, Madisonville (2,382), Northside (1,625), and Kennedy Heights $(1,559)$ have large numbers of children and youth and thus special needs for similar services. In SES IV six of the 12 neighborhoods have more than 1,000 children and youth.
Figure 7 f focuses on children under five years of age. There are 15 neighborhoods with less than 200 young children and 6 with over 1,000 . The latter are all large neighborhoods with 3 or more census tracts.

In terms of sheer numbers the SES I neighborhoods with the highest youth populations are East Price Hill, Avondale, and Mt. Airy. In SES II West Price Hill, West End, Bond Hill and Evanston have the highest percentage of youths (5 to 17) population. Winton Place, and Mt. Auburn are close behind.

In 2005-2009 there were 39,622 persons aged 17 and under in SES I and II, compared to 36,132 in the two higher SES quartiles (Table $7 \mathrm{e})$. The fact that the youth population is so high in the lower SES quartiles suggests a need for high levels of investment in health centers, schools, and recreation facilities in inner city areas.

Table 7 f and Figure 11 can be used to help plan target areas for day care needs, youth recreation, and crime prevention initiatives. In this chapter, we have focused attention on SES I and SES II because children and youth in high-
er SES areas have more access to private day care, recreation, and health services, but we have provided data for all the neighborhoods.

If one wanted to target efforts based on high numbers of very young children there are six neighborhoods which, in 2005-2009, had over 1,000 children in the $0-5$ age range. The highest number was in Westwood. Are there special needs in Westwood? The neighborhood description in Chapter 10 shows Westwood to be a highly complex neighborhood which in some census tracts has experienced an influx of white Appalachians and African-Americans. A look at the Appendix III reveals that much of the decline in social indicators has occurred in tracts 88 and 100.02 (in East Westwood). Neighborhood leaders and planners should look further at what residents of these two tracts might be willing to help develop for their children and youth. Here we have used Westwood, a complex multi-SES neighborhood, as an illustration of how to use the various components of this report to assess community needs.

> Community leaders in neighborhoods with large number of children and youths should ask themselves whether their neighborhoods are responsive or hostile to the needs of the various demographic groups.

Community leaders in neighborhoods with large number of children and youths should ask themselves whether their neighborhoods are responsive or hostile to the needs of the various demographic groups. Are there playgrounds, daycare centers and other facilities for children? Are there schools where children feel safe, welcome, respected and challenged to learn? Are there safe places for latchkey kids after school?

Figure 7d
Neighborhoods With Highest Numbers of Persons 60 Years and Over, 2005-2009a ${ }^{\text {a }}$

Table 7e Cincinnati Neighborhoods Age Compositions, 2005-2009								
	Children				Adults			
	Under 5 Years		5-17 Years		18-59 Years		>= 60 years	
Neighborhood	Percent	Number	Percent	Number	Percent	Number	Percent	Number
1st Quartile								
S. Cumminsville - Millvale	24\%	734	21\%	668	47\%	1,464	8\%	242
Fay Apartments	24\%	456	24\%	461	45\%	861	8\%	145
East Price Hill	11\%	1,982	22\%	4,049	57\%	10,652	11\%	2,115
Winton Hills	19\%	912	27\%	1,285	43\%	2,085	11\%	519
Camp Washington	2\%	22	13\%	181	66\%	942	19\%	276
Riverside - Sayler Park	7\%	114	17\%	265	62\%	973	14\%	225
Avondale	11\%	1,570	19\%	2,701	53\%	7,400	16\%	2,296
Walnut Hills	6\%	371	17\%	1,106	59\%	3,809	18\%	1,151
Sedamsville - Riverside	9\%	155	14\%	255	57\%	1,016	20\%	348
N. Fairmount - English Woods	5\%	173	31\%	1,050	53\%	1,797	11\%	359
S. Fairmount	9\%	288	24\%	801	55\%	1,794	12\%	392
Mt. Airy	10\%	990	20\%	2,030	55\%	5,470	15\%	1,475
2nd Quartile								
Bond Hill	4\%	268	19\%	1,384	57\%	4,087	21\%	1,480
Over-the-Rhine	8\%	360	22\%	1,026	62\%	2,891	9\%	400
Linwood	2\%	19	23\%	180	61\%	479	13\%	105
Winton Place	7\%	171	19\%	495	65\%	1,662	9\%	221
Carthage	9\%	231	20\%	499	45\%	1,108	25\%	607
Evanston	7\%	470	19\%	1,351	52\%	3,622	23\%	1,585
West End	8\%	676	19\%	1,538	57\%	4,659	15\%	1,240
Roselawn	3\%	320	11\%	1,043	68\%	6,647	17\%	1,694
Lower Price Hill	7\%	56	17\%	130	65\%	495	10\%	77
West Price Hill	11\%	2,061	19\%	3,695	59\%	11,515	12\%	2,299
Corryville	2\%	53	8\%	258	84\%	2,574	6\%	187
Mt. Auburn	3\%	132	11\%	587	75\%	3,956	11\%	582

Cincinnati Neighborhoods Age Compositions, 2005-2009
Children

Figure 11
2005-2009 Cincinnati City Population of Children Less Than 5 years of Age and Areas of Poverty

[^4]\[

$$
\begin{aligned}
& \text { 45. Westwood } \\
& \text { 46. Sesamsille - Riverside } \\
& \text { 47. Riverside - Sayler Park } \\
& \text { 48. Savler Park }
\end{aligned}
$$
\]

Figure 7f
Neighborhoods With Greatest Number of Children Under 5, 2005-2009a

Chadter 8

Unemployment And Joblessness

The data in this report allow us to track the impact of economic changes and trends such as welfare reform (1998), the 1980s surge in poverty, the 1990s boom years, the recession of 2000 and the beginnings of the 2008 Great Recession. Table 8a shows the 2005-2009 situation and Table 8 b shows the 40 year picture. We also show how the distribution of high unemployment and joblessness have changed over time.

Definitions

The Census Bureau considers a person "employed" if he or she had a job or worked even part time at a family farm or business during the week the census was taken. A person is considered "unemployed" if he or she (a civilian 16 years or older) did not have a job but had looked for a job within the past four weeks and was available for work. A frequent criticism of this definition of "unemployment" is that it may exclude the discouraged worker, the person who has simply quit actively looking for work due to past failures or current labor market conditions. The employed and the unemployed together comprise the "civilian labor force." The unemployment rate is expressed as a percent of the civilian labor force. Those classified as "not in the civilian labor force" include inmates of institutions, students, others under 65, and others over 65. Presumably it is in the category "others under 65 not in the civilian labor force" where we would find discouraged workers. A combination of those unemployed and those "under 65 not in the civilian labor force" are classified as jobless in Table 8a. And finally, "under- employed" or "sub employed" are terms used to designate those persons who may be working but who do not earn enough to support themselves and/or their families.

Neighborhood Data for Cincinnati

In 1970, less than half of Cincinnati's 48 neighborhoods had equal to or less than the citywide unemployment rate of 4.7 percent. In 2000 there was about the same number below the citywide average of 9.0 percent unemployed. In 2000 there were six communities with unemployment rates double the city average compared to eleven in 1990, seven in 1980 and five in 1970. African American and Appalachian neighborhoods made up all those with higher unemployment.

In 2005-2009, the pattern of unemployment and poverty (Figure 12) is very similar to that of the 2004 edition of this study. The tract mean for unemployment

> The tract mean for unemployment in 2000 was 9 percent. In 2005-2009 it was 12 percent, higher than the national average.
in 2000 was 9 percent. In 2005-2009 it was 12 percent, higher than the national average. One difference between the two decades is that the current Figure 12 shows more areas of high unemployment outside the high poverty tracts. These include Kennedy Heights and Roselawn, and three census tracts on the west. Recent changes in Over-the-Rhine, the West End and the CBD are also reflected in Figure 12. Three tracts there no longer have above average poverty and several are no longer in the high unemployment area.

Table 8a shows joblessness and unemployment for Cincinnati neighborhoods in 2005-2009. In SES I rates range from 8 percent in Riverside-Sayler Park to 34 percent in Fay Apartments. In SES II rates range from 6 percent in Corryville to 37 percent in Lower Price Hill. In SES III University Heights, Kennedy Heights, Madisonville, and College Hill had rates in the 10 to 16 percent range. In the 48 neighborhoods, highest numbers of unemployed were in Westwood $(1,791)$, West Price Hill (902), East Price Hill $(1,416)$, and College Hill (896) and Avondale (827). See Table 8a.

TABLE 8A

CINCINNATI NEIGHBORHOODS' JOBLESSNESS AND UNEMPLOYMENT RATES, 2005-2009

	Jobless Persons		Unemployed Persons	
Neighborhood	Percent	Number	Percent	Number
1st Quartile				
S. Cumminsville - Millvale	57\%	919	27\%	266
Fay Apartments	71\%	713	34\%	181
East Price Hill	44\%	5,268	17\%	1,416
Winton Hills	61\%	1,439	28\%	391
Camp Washington	65\%	656	14\%	57
Riverside - Sayler Park	27\%	291	8\%	68
Avondale	44\%	3,734	15\%	827
Walnut Hills	47\%	1,965	16\%	440
Sedamsville - Riverside	62\%	673	27\%	157
N. Fairmount - English Woods	48\%	966	20\%	271
S. Fairmount	45\%	944	16\%	223
Mt. Airy	34\%	2,159	10\%	484
2nd Quartile				
Bond Hill	40\%	1,906	19\%	699
Over-the-Rhine	38\%	1,198	12\%	267
Linwood	44\%	237	9\%	30
Winton Place	36\%	666	7\%	88
Carthage	43\%	564	9\%	73
Evanston	46\%	2,020	21\%	713
West End	44\%	2,271	12\%	419
Roselawn	67\%	4,869	12\%	363
Lower Price Hill	66\%	338	37\%	109
West Price Hill	32\%	4,103	9\%	902
Corryville	39\%	1,080	6\%	100
Mt. Auburn	42\%	1,823	10\%	286

TABLE 8A

CINCINNATI NEIGHBORHOODS' JOBLESSNESS AND UNEMPLOYMENT RATES, 2005-2009

	Jobless Persons		Unemployed Persons	
Neighborhood	Percent	Number	Percent	Number
3rd Quartile				
Kennedy Heights	37\%	1,501	14\%	432
University Heights	43\%	3,142	16\%	786
Fairview - Clifton	38\%	2,612	8\%	371
Westwood	32\%	7,958	9\%	1,791
Northside	30\%	1,806	8\%	387
Madisonville	28\%	2,266	11\%	763
Evanston - E. Walnut Hills	34\%	394	8\%	65
Hartwell	26\%	915	5\%	131
College Hill	30\%	3,260	10\%	896
N. Avondale - Paddock Hills	56\%	3,904	9\%	321
CBD - Riverfront	51\%	1,735	3\%	56
4th Quartile				
Oakley	15\%	1,381	4\%	351
Sayler Park	37\%	913	7\%	136
East End	28\%	313	5\%	42
Mt. Washington	26\%	2,655	5\%	469
Pleasant Ridge	24\%	1,665	7\%	401
East Walnut Hills	34\%	838	7\%	145
Clifton	24\%	1,532	8\%	433
California	30\%	261	5\%	31
Mt. Adams	19\%	288	1\%	7
Mt. Lookout - Columbia Tusculum	17\%	419	1\%	15
Hyde Park	18\%	1,976	2\%	195
Mt. Lookout	20\%	507	1\%	22

Cincinnati Neighborhood Approximation 45. Westwood 46. Sedamsvile - Rverside
47. Rivside - Sayler Park 48. Sayler Park
23. Madisonville
24. Pleasant Ridge 24. Pleasant Ridge
25. Kennedy Heights
26. Hartwell
28. Roselawn
29. Bond Hill
30. N. Avondale
31. Avondale
32. Clifton
33. Winton Place
34. Northside
35. S. Cumminsvill
$\begin{array}{ll}\text { 13. Evanston - E. Walnut Hills } & \text { 35. S. Cumminsville - Millvale } \\ \text { 14. E. Walnut Hills } & \text { 36. Winton Hills }\end{array}$
Queensgate
2. West End

[^5]31. Avondale
32. Clitton
33. Winton Place
34. Northside
13. Evanston - E. Walnut Hills 35. S. Cumminsville - Millvale
38. Mt. Airy
40. N. Fairmount - English Woods
41. S. Fairmount
42. Lower Price Hill
43. East Price Hill
 44. West Price Hill

Table 8b shows the thirty year trends for joblessness and unemployment. The most dramatic increases in percent unemployment were in Fay Apartments (311\%), Sedamsville-Riverside (111\%), Bond Hill (165\%), Mt. Airy (149\%), and Roselawn (209\%). In the 2005-2009 period the percent increase was more than 50 percent in three SES I neighborhoods, 4 in SES II, 5 in SES III, and 6 in SES IV. Between 1990 and 2000 unemployment rates went down in more than half of the 48 neighborhoods. In 2005-2009 only 13 saw their rates decline. The 1990s was a period of relatively healthy national economy. The figures for the 2000s reflect the mixed effects of welfare reform, which might explain the drop in rates for some neighborhoods, and the counter effects of the 2000 and 2008 recessions. The big decreases in Over-the-Rhine and West End are in keeping with their rising SES index levels (Chapter 4). Some declines (Avondale, for example) could be a reflection of "the discouraged worker" syndrome which causes people to quit looking for a job. As in

In Chapter 12, we will discuss alternatives to high unemployment and joblessness.

The working climate of Cincinnati is worse than the statistics portray. Many of the jobs that are available now are minimum wage positions with little or no hope of advancement.

Table 2b shows how the unemployment rate varied in the four social areas over the forty year period of this study. Between 1970 and 2005-2009 unemployment went from 9 percent to 16 percent in SES I, doubled in SES II and III and almost doubled in SES IV. Unemployment and joblessness continue to haunt us and are not just a problem in the inner city.
previous decades unemployment patterns in
Cincinnati neighborhoods are affected by the
national economy as well as local community
previous decades unemployment patterns in
Cincinnati neighborhoods are affected by the
national economy as well as local community
previous decades unemployment patterns in
Cincinnati neighborhoods are affected by the
national economy as well as local community development efforts and migration trends.
The working climate of Cincinnati is worse than the statistics portray. Many of the jobs that are available now are minimum wage service positions with little or no hope of advancement. Many of the working poor are underemployed and are living below the poverty level. The implications of this trend toward more low paying service positions is that the economic situation becomes more and more critical and destabilizes families; hence poverty becomes more profound. Competition for jobs will become even keener. A growing number of jobless (discouraged workers) can be expected.

The figures for the 2000s reflect the mixed effects of welfare reform, which might explain the drop in rates for some neighborhoods, and the counter effects of the 2000 and 2008 recessions.

TABLE 8B																
	Joblessness Rate				Percent Change				Unemployment Rate				Percent Change			
Neighborhood	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$	$\begin{aligned} & 1980- \\ & 1990 \end{aligned}$	$\begin{aligned} & 1990- \\ & 2000 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2009 \end{aligned}$	$\begin{aligned} & 1980- \\ & 2009 \end{aligned}$	1980	1990	2000	$\begin{aligned} & \text { 2005- } \\ & 2009 \end{aligned}$	$\begin{aligned} & 1980- \\ & 1990 \end{aligned}$	$\begin{aligned} & 1990- \\ & 2000 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2009 \end{aligned}$	$\begin{aligned} & 1980- \\ & 2009 \end{aligned}$
1st Quartile																
S. Cumminsville-Millvale	57\%	64\%	58\%	57\%	13\%	-10\%	-2\%	0\%	16\%	29\%	20\%	27\%	90\%	-32\%	34\%	73\%
Fay Apartments	34\%	61\%	54\%	71\%	79\%	-12\%	32\%	109\%	8\%	23\%	29\%	34\%	171\%	27\%	19\%	311\%
East Price Hill	35\%	34\%	34\%	44\%	-2\%	0\%	28\%	26\%	9\%	8\%	9\%	17\%	-15\%	10\%	97\%	85\%
Winton Hills		61\%	56\%	61\%	----	-9\%	9\%	----	17\%	25\%	26\%	28\%	48\%	2\%	8\%	62\%
Camp Washington	67\%	51\%	64\%	65\%	-24\%	26\%	1\%	-3\%	18\%	15\%	14\%	14\%	-18\%	-9\%	2\%	-23\%
Riverside-Sayler Park	32\%	30\%	32\%	27\%	-6\%	7\%	-16\%	-16\%	5\%	7\%	13\%	8\%	32\%	79\%	-38\%	45\%
Avondale	42\%	44\%	47\%	44\%	6\%	6\%	-6\%	6\%	15\%	17\%	13\%	15\%	10\%	-21\%	12\%	-3\%
Walnut Hills	43\%	44\%	44\%	47\%	3\%	0\%	7\%	10\%	16\%	14\%	13\%	16\%	-12\%	-4\%	20\%	1\%
Sedamsville-Riverside	48\%	46\%	28\%	62\%	-5\%	-38\%	118\%	28\%	13\%	17\%	9\%	27\%	33\%	-45\%	190\%	111\%
N. Fairmount - English Woods	58\%	61\%	60\%	48\%	6\%	-3\%	-20\%	-17\%	20\%	19\%	25\%	20\%	-3\%	30\%	-19\%	2\%
S. Fairmount	37\%	45\%	49\%	45\%	22\%	9\%	-8\%	23\%	9\%	16\%	14\%	16\%	83\%	-12\%	12\%	81\%
Mt. Airy	26\%	19\%	27\%	34\%	-26\%	42\%	25\%	32\%	4\%	4\%	4\%	10\%	-1\%	6\%	137\%	149\%
2nd Quartile																
Bond Hill	0\%	29\%	34\%	40\%	-----	17\%	19\%	----	7\%	10\%	7\%	19\%	44\%	-33\%	176\%	165\%
Over-the-Rhine	66\%	66\%	59\%	38\%	0\%	-11\%	-34\%	-42\%	28\%	24\%	24\%	12\%	-13\%	-2\%	-52\%	-59\%
Linwood	52\%	42\%	34\%	44\%	-20\%	-19\%	28\%	-16\%	15\%	18\%	8\%	9\%	18\%	-58\%	18\%	-41\%
Winton Place	24\%	31\%	27\%	36\%	30\%	-14\%	34\%	50\%	7\%	10\%	6\%	7\%	40\%	-43\%	20\%	-4\%
Carthage	33\%	30\%	33\%	43\%	-9\%	11\%	31\%	32\%	9\%	7\%	6\%	9\%	-20\%	-16\%	48\%	-1\%
Evanston	45\%	41\%	38\%	46\%	-9\%	-6\%	20\%	2\%	15\%	12\%	13\%	21\%	-18\%	3\%	69\%	43\%
West End	58\%	64\%	57\%	44\%	10\%	-11\%	-23\%	-24\%	21\%	24\%	21\%	12\%	13\%	-11\%	-42\%	-42\%
Roselawn	0\%	23\%	30\%	67\%	----	29\%	122\%	----	4\%	5\%	8\%	12\%	23\%	70\%	47\%	209\%
Lower Price Hill	57\%	59\%	50\%	66\%	3\%	-15\%	33\%	15\%	19\%	21\%	16\%	37\%	8\%	-23\%	133\%	94\%
West Price Hill	28\%	24\%	24\%	32\%	-13%	-2\%	37\%	16\%	5\%	4\%	4\%	9\%	-23\%	-9\%	167\%	88\%
Corryville	44\%	36\%	35\%	39\%	-17\%	-5\%	13\%	-11\%	8\%	12\%	7\%	6\%	44\%	-41\%	-17\%	-30\%
Mt. Auburn	47\%	36\%	41\%	42\%	-23\%	14\%	2\%	-10\%	20\%	13\%	11\%	10\%	-37\%	-9\%	-13\%	-50\%

TABLE 8B CINCINNATI NEIGHB	OOD	CH	GES		ESS	SS ANI	UN:	LOYM	NT F	$\text { res, } 1$	80	$200=$	09			
	Jobless	ness Ra			Perce	Change			Unemp	oyme	Rate		Percent	hange		
Neighborhood	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { 1980- } \\ & 1990 \end{aligned}$	$\begin{aligned} & 1990- \\ & 2000 \end{aligned}$	$\begin{aligned} & 2000- \\ & 2009 \end{aligned}$	$\begin{aligned} & 1980- \\ & 2009 \end{aligned}$	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$	$\begin{aligned} & 1980- \\ & 1990 \end{aligned}$	$\begin{aligned} & 1990- \\ & 2000 \end{aligned}$	$\begin{array}{\|l\|} \hline 2000- \\ 2009 \end{array}$	$\begin{aligned} & 1980- \\ & 2009 \end{aligned}$
3rd Quartile																
Kennedy Heights	29\%	26\%	27\%	37\%	-12\%	4\%	41\%	29\%	10\%	7\%	6\%	14\%	-33\%	-17\%	144\%	37\%
University Heights	51\%	43\%	42\%	43\%	-16\%	0\%	1\%	-16\%	7\%	6\%	11\%	16\%	-9\%	70\%	46\%	126\%
Fairview-Clifton	36\%	31\%	30\%	38\%	-15\%	-1\%	26\%	7\%	7\%	5\%	7\%	8\%	-30\%	49\%	9\%	14\%
Westwood	0\%	23\%	26\%	32\%	----	15\%	24\%	----	4\%	5\%	5\%	9\%	56\%	-8\%	85\%	167\%
Northside	37\%	32\%	28\%	30\%	-13\%	-12\%	5\%	-19\%	9\%	9\%	7\%	8\%	0\%	-22\%	18\%	-7\%
Madisonville	36\%	33\%	28\%	28\%	-7\%	-17\%	-1\%	-23\%	13\%	10\%	6\%	11\%	-24\%	-42\%	93\%	-14\%
Evanston-E. Walnut Hills	40\%	33\%	32\%	34\%	-19\%	0\%	3\%	-16\%	10\%	8\%	10\%	8\%	-20\%	22\%	-22\%	-24\%
Hartwell	29\%	23\%	20\%	26\%	-19\%	-14\%	28\%	-11\%	6\%	4\%	5\%	5\%	-28\%	39\%	-16\%	-17\%
College Hill	26\%	25\%	29\%	30\%	-2\%	12\%	4\%	15\%	6\%	7\%	6\%	10\%	13\%	-15\%	73\%	66\%
N. Avondale - Paddock Hills	25\%	29\%	37\%	56\%	14\%	28\%	52\%	124\%	6\%	8\%	5\%	9\%	40\%	-35\%	76\%	60\%
CBD-Riverfront	0\%	31\%	61\%	51\%	----	95\%	-16\%	----	9\%	6\%	16\%	3\%	-33\%	167\%	-80\%	-65\%
4th Quartile																
Oakley	25\%	18\%	17\%	15\%	-29\%	-5\%	-14\%	-42\%	7\%	3\%	3\%	4\%	-56\%	-22\%	61\%	-45\%
Sayler Park	31\%	26\%	20\%	37\%	-16\%	-25\%	90\%	20\%	8\%	4\%	3\%	7%	-53\%	-22\%	152\%	-9\%
East End	50\%	50\%	32\%	28\%	-1\%	-35\%	-13\%	-44\%	16\%	12\%	7\%	5\%	-25\%	-40\%	-33\%	-70\%
Mt. Washington	23\%	21\%	20\%	26\%	-9\%	-5\%	28\%	11\%	4\%	3\%	4\%	5\%	-32\%	41\%	47\%	41\%
Pleasant Ridge	0\%	21\%	22\%	24\%	----	3\%	12\%	-	6\%	5\%	3\%	7\%	-23\%	-28\%	110\%	16\%
East Walnut Hills	26\%	23\%	24\%	34\%	-13\%	6\%	41\%	30\%	6\%	4\%	4\%	7\%	-29\%	4\%	65\%	23\%
Clifton	26\%	22\%	23\%	24\%	-15\%	2\%	8\%	-6\%	5\%	4\%	3\%	8\%	-12\%	-20\%	151\%	76\%
California	40\%	28\%	22\%	30\%	-29\%	-23\%	38\%	-24\%	10\%	8\%	2\%	5\%	-19\%	-77\%	152\%	-52\%
Mt. Adams	12\%	11\%	10\%	19\%	-11\%	-3\%	81\%	55\%	3\%	0\%	2\%	1\%	-84\%	416\%	-78\%	-82\%
Mt. Lookout-Columbia Tusculum	34\%	25\%	16\%	17\%	-28\%	-34\%	8\%	-49\%	8\%	3\%	3\%	1\%	-68\%	14\%	-77\%	-92\%
Hyde Park	22\%	17\%	17\%	18\%	-24\%	1\%	5\%	-20\%	3\%	2\%	2\%	2\%	-51\%	2\%	20\%	-39\%
Mt. Lookout	28\%	20\%	16\%	20\%	-30\%	-21\%	26\%	-30\%	3\%	1\%	1\%	1\%	-46\%	-9\%	-22\%	-62\%

Cincinnati Neighborhood Approximation Queensgate
West n nd 3. CBD-Riverfront 4. Over-the-Rhin
5. Mt. Adams $\begin{array}{ll}\text { 5. Mt. Adams } & \text { 27. Carthage } \\ \text { 6. Mt. Auburn } & \text { 28. Roselawn }\end{array}$
29. Bond Hill
$\begin{array}{ll}\text { 7. Fairview - Clititon Heights } & \text { 29. Bond Hil } \\ \begin{array}{ll}\text { 8. Camp Washinton } \\ \text { 9. University } \\ \text { 10. Corght } & \text { 30. } \text {. Avondale e Paddock } \\ \text { Hills } \\ \text { 11. Walnut Hills } & \text { 31. Avondale } \\ \text { 12. Evanston } & \text { 32. Cliton } \\ \text { 33. Winton Place } \\ \text { 34. Northside }\end{array}\end{array}$
$\begin{array}{ll}\text { 8. Camp Washington } & \text { 30. N. Avondale - Paddock Hills } \\ \text { 9. University Heights } & \text { 31. Avondale } \\ \text { 10. Corryville } & \text { 32. Clitton } \\ \text { 11. Walnut Hills } & \text { 33. Winton Place } \\ \text { 12. Evanston } & \text { 34. Northside }\end{array}$
$\begin{array}{ll}\text { 8. Camp Washington } & \text { 30. N. Avondale - Paddock Hills } \\ \text { 9. University Heights } & \text { 31. Avondale } \\ \text { 10. Corryville } & \text { 32. Clitton } \\ \text { 11. Walnut Hills } & \text { 33. Winton Place } \\ \text { 12. Evanston } & \text { 34. Northside }\end{array}$
35. S. Cumminsville
36. Winton Hills
37. College Hill
38. Mt. Airy
7. Fairview - Clifton Heights
8. Camp Washington
9. University Heights
10. Corryville
11. Walnut Hills
12. Evanston
13. Evanston - E. Walnut Hills
14. E. Walnut Hills
15. East End
16. California
17. Mt. Washington
18. Mt. Lookout - Columbia Tus.
19. Mt. Lookout
20. Linwood
21. Hyde Park
22. Oakley
13. Evanston - E. Walnut Hills 35. S. Cumminsville - Millvale
40. N. Faimount -
41. S. Fairmount
43. East Price Hill
44. West Price Hill

The Neighborhoods: 1970 to 2005-2009 Comparisons

Previous sections of this report have been concerned with establishing the broad pattern of the distribution of social indicators in the city. The authors feel that the concept of socioeconomic status, especially when it is supplemented with the other kinds of data available, is a valuable social indicator for needs assessment purposes. The map of the four social areas (Figure 2) shows the broad pattern of the city's socioeconomic structure.

In the first edition of this study (1974) care was taken to point out the limitations of "ecological analysis" - the utilization of statistics aggregated at the census tract, neighborhood, or social area level. It was pointed out that this type of analysis is subject to the "ecological fallacy", the attribution of statistical averages to all the diverse individuals in a given geographic unit. In the 1970 Neighborhood Descriptions, therefore, the reader was informed about the relative diversity or homogeneity of each neighborhood. This exercise will not be repeated here. The reader is hereby referred to the first edition for that discussion. The focus of the following narrative will be to outline changes in the neighborhoods that have occurred since 1970, and especially the 2000 to 2005-2009 period. Both Appendix II and III, as well as Table 9 have been used for the neighborhood descriptions.

Small changes in 1970 to 1980 SES index and SES rank for a tract or neighborhood may be accidental. These accidental changes are caused by the fact that tracts and neighborhoods were added and deleted. Example: Linwood was a new tract and neighborhood in 1980. Its insertion on the list of tracts and neighborhoods caused all tracts and neighborhoods with a higher SES index to have a slightly higher SES index. Gains or losses of less than six points should not be regarded as significant.

The reader may note that for neighborhoods consisting of a single census tract, there is a small divergence between the values in Table 4 a and Appendix II. In Table 4a we use the
median of medians rather than the mean of medians for the tracts. For single tract neighborhoods, the values in Appendix II are closer to the ACS estimates and are used in this chapter for single tract neighborhoods.

1 Queensgate

During the 1980s, Queensgate ceased to be a residential neighborhood. In 2010 the Census Bureau merged Tract 1 with Tract 91 (Lower Price Hill).

2 The West End. SES II

In 1970, the West End ranked 8th (from the bottom) on the SES Index. In 1980 it fell to 5 th. Since then its score has gradually improved. It currently ranks 19th and is firmly in SES II overall. Three tracts are still in SES I; two are in SES II. Tract 14 is in SES IV and Tract 4 is in SES III. Amid this new diversity poverty and unemployment persist in the neighborhood's midsection (Figure 2). There are 2,271 jobless persons and the 2005-2009 unemployment rate was 12 percent.

Tract 2 has the second lowest SES score among Cincinnati Tracts. Thirty four percent of its adults have less than a high school education. Only 2.6 percent of its children under 18 are in two parent homes. Tracts 3.01, 3.02, and 15 are also among the city's ten poorest census tracts.

3 CBD Riverfront. SES III

In 2005-2009 numbers reflect new upscale housing in Tract 6 and some lower income housing in Tract 7. Tract 6 became SES IV and Tract 7 fell to SES III, reversing their previous positions in the quartile chart. The good news is that the CBD is again developing as a residential community and it is at the very top of SES III. The area ranked 28 among the neighborhoods in 1970, fell to 24 in 1980, rose to 41 in 1990 and now holds the rank of 35 . This means there are 12 neighborhoods with higher SES scores (Table 9). The population is now 3,793 up from 3,149 in 2000.

SES Rank					Neighborhood	SES Index					Change in SES Index				
1970	1980	1990	2000	$\begin{array}{\|l\|} \hline 2005- \\ 2009 \\ \hline \end{array}$		1970	1980	1990	2000	$\begin{aligned} & \hline 2005- \\ & 2009 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 1970- \\ 1980 \\ \hline \end{array}$	$\begin{array}{\|l\|} 1980- \\ 1990 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 1990- \\ 2000 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2000- \\ 2009 \\ \hline \end{array}$	$\begin{aligned} & 1970- \\ & 2009 \\ & \hline \end{aligned}$
20	19	19	20	29	Northside	58.9	46.9	52.8	48.8	61.2	-12	5.9	-4	12.4	2.3
23	23	23	30	30	Madisonville	64.0	53.7	60.1	69.9	62.3	-10.3	6.4	9.8	-7.6	-1.7
--- ${ }^{\text {a }}$	18	22	29	31	Evanston - E. Walnut Hills	--- ${ }^{\text {a }}$	46.3	59.4	68.8	65.6	--- ${ }^{\text {a }}$	13.1	9.4	-3.2	---a
33	32	39	35	32.5	Hartwell	89.2	75.8	89.9	78.0	66.4	-13.4	14.1	-11.9	-11.6	-22.8
39	36	36	33	32.5	College Hill	100.7	82.0	87.5	75.7	66.4	-18.7	5.5	-11.8	-9.3	-34.3
$\begin{gathered} 41, \\ 42 \end{gathered}$	39	42	37	34	N. Avondale - Paddock Hills	106.4	87.0	96.2	84.0	75.0	-19.4	9.2	-12.2	-9.0	-31.4
28	24	41	36	35	CBD - Riverfront	80.0	56.2	95.8	81.0	75.7	-23.8	39.6	-14.8	-5.3	-4.3
24	29	35	39	36	Oakley	73.7	72.3	82.1	85.6	76.3	-1.4	9.8	3.5	-9.3	2.6
25	27	33	27	37	Sayler Park	74.7	71.1	80.5	53.2	76.5	-3.6	9.4	-27.3	23.3	1.8
2	10	9	17	38	East End	18.3	28.5	29.2	46.4	77.4	10.2	0.7	17.2	31.0	59.1
43	45	40	41	39	Mt. Washington	107.6	98.9	95.2	93.9	82.4	-8.7	-3.7	-1.3	-11.5	-25.2
37	40	39	38	40	Pleasant Ridge	95.1	89.3	89.9	84.7	84.5	-5.8	0.6	-5.2	-0.2	-10.6
31	35	38	42	41	East Walnut Hills	86.2	78.9	87.8	95.6	84.8	-7.3	8.9	7.8	-10.8	-1.4
34.5	43	44	40	42	Clifton	93.4	93.3	102.1	90.8	87.7	-0.1	8.8	-11.3	-3.1	-5.7
22	31	30	43	43	California	62.2	75.2	78.8	106.4	91.6	13	3.6	27.6	-14.8	29.4
21	44	43	45	44	Mt. Adams	60.1	98.4	100.5	109.9	94.7	38.3	2.1	9.4	-15.2	34.6
--- ${ }^{\text {a }}$	42	45	43	45	Mt. Lookout - Columbia Tusculum	--- ${ }^{\text {a }}$	91.2	102.4	104.6	98.2	---a ${ }^{\text {a }}$	11.2	2.2	-6.4	---a ${ }^{\text {a }}$
40	47	46	46	46	Hyde Park	102.3	106.9	111.9	110.1	101.2	4.6	5	-1.8	-8.9	-1.1
29	46	47	47	47	Mt. Lookout	85.5	101.7	118.2	112.2	102.6	16.2	16.5	-6	-9.6	17.1
6	--- ${ }^{\text {a }}$	Queensgate	25.8	--- ${ }^{\text {a }}$											
---- ${ }^{\text {a }}$	Data not available														

4 Over-The-Rhine. SES II

Across Central Parkway from the CBD, Over-the-Rhine changed dramatically. The area between Vine Street and Reading Road (Tracts 10 and 11) and below Liberty are now SES III. As late as 2000 Over-the-Rhine ranked 4 th from the bottom on the SES Index. It now ranks 14th. The other three tracts (Table 2a) still look very much like inner city neighborhoods with high poverty rates and Education Indicators. In Tract 9 the Education Indicator is 37.7 and the Family Structure Indicator is so low it registers as zero (Appendix II).

5 Mount Adams. SES IV

In 1970 Mt. Adams was a working class neighborhood in SES II. By 1980 the area had been completely transformed. New housing was added and older housing upgraded to produce a neighborhood that includes many artists and professionals and few children. In 2000 we wrote that Mt. Adams' SES score had risen more than any neighborhood. In the 2005-2009 period there was a noticeable decline in the SES Index, perhaps the result of two recessions and their effect on income. Mt. Adams ranks 44th (3rd from the top) on the SES Index.

6 Mount Auburn. SES II

With data from the 1990 census we were able to report that Mt. Auburn had reversed its pattern of decline which had held since 1970. This trend continued in the 2005-2009 period. The Liberty Hill area (Tract 18) rose to SES IV and Tract 23 rose from SES I to SES II. The poverty rate fell from 26 percent to 24 percent and the percent female headed families fell from 50 to 21.3 percent. After remaining steady at about 73 for 30 years the percent African American fell to 52.5. Mt. Auburn is at the top of SES II and should be in SES III by 2020.

7 Fairview-Clifton Heights. SES III

At the time of the 1970 Census all three tracts in this neighborhood were in SES II. They all gained in SES score in the 1970-1990 period and then Tracts 25 and 26 declined some in the 1990s. Currently Tract 26 is SES II and Tracts 25 and 27 are SES III. Fairview is a close-in high density neighborhood which has been a
working class and student district. Many of its homes have excellent city views. It is clearly becoming more upscale over time.

8 Camp Washington. SES I

In 1970 Camp Washington had the lowest SES of any Cincinnati neighborhood. By then, it had ceased to be Italian and German and had become primarily Appalachian. In 2005-2009 it has the fifth lowest SES Index. The poverty rate at 16.7 percent is low for an inner city neighborhood. Fifty four percent of children under 18 live in two parent families. This is a stable working class neighborhood with some racial and ethnic diversity. It is located in the industrial valley along the Mill Creek. Because of its location between the creek and the expressway access to other areas is restricted somewhat but Spring Grove Avenue is a major traffic artery through the industrial valley.

9 University Heights. SES III

University Heights had little change in SES in the 70 s and 80 s and declined during the 90 s . A drop in the family status indicator accounted for much of that decline. Tract 29 declined from SES III in 2000 to SES II in 2005-2009. Tract 30 which includes Fraternity Row along Clifton Avenue remains SES III. The racial composition is stable. The percent African American was 18.2 percent in 2000 and 19.6 in 2005-2009. As in previous decades, overcrowding and a low family status index (in Tract 29) help lower the overall SES Index.

10 Corryville. SES II

Corryville historically has been a working class to middle class neighborhood adjacent to UC and the medical centers. In 1970 it was 55 percent African American. By 2005-2009 this had dropped to 34.8 percent. Tract 32 abuts the hospital area along Martin Luther King Avenue and has some new market rate housing. College students do not usually have high incomes and this affects SES levels in the whole of Uptown. On the other hand, the steady demand for housing for university and medical people is a stabilizing factor. With 119 families below the poverty line Corryville has a poverty rate of 34.8 percent. The SES Index was 43.3 in 1970 and is at 54.5 in 2005-2009.

11 Walnut Hills. SES I

The SES Index for Walnut Hills was 34.6 in 1970. After rising to 37.9 in 1990 it has been static at around 32 since. Progress in one tract is offset by decline in another. The poverty rate in 2005-2009 was 34.5 , the eighth highest in the city. The Education Index continued to improve and was down to 30.2 . The dropout rate was only 11 percent compared to 23 percent in Roselawn and 14 percent in Avondale. Tract 19 improved in SES Index in the 80s, declined in the 90 s and recovered some in the past decade to 72.0. This tract is now near the top of SES III. The other tracts have not seen similar rises in SES (Appendix II). The SES score for Tract 35 has fallen to 19 compared to 30.4 in the Over-the-Rhine's poorest tract (9). Walnut Hills (except for Tract 19) and Avondale seem to be enduring pockets of poverty on Cincinnati's near east side. Community development efforts need to include education and access to jobs with good pay and benefits. There are almost 1,500 children and youth in this neighborhood so child development and youth opportunities are also crucial. A look at Table 9 shows that a turnaround for Walnut Hills is needed. Its neighborhood rank has declined from 14 in 1990 to 8 in 2005-2009.

12 Evanston. SES II

In 2000 we wrote that Evanston seemed stuck. This still seems to be true. The SES Index is stable at around 43 . Tracts 38 and 40 are in SES II and III respectively. Tract 39 dropped to SES I in 2000 and remained there in 20052009. Its SES score of 34 is near to that of Tract 17 in Over-the-Rhine. Evanston is 81 percent African American compared to 89 percent in 2000 . The poverty rate is 21 percent. The dropout rate is 9 percent and 822 adults lack a high school education. That is one out of five, but the number is down from 1,777 in 2000. The unemployment rate for Evanston is one of the city's highest at 21 percent. The program recommendations are similar to those for Walnut Hills. Area planning needs to include Walnut Hills and Avondale. Evanston shares some of their community development needs.

13 Evanston - East Walnut Hills. SES III

This statistical neighborhood first appeared in the second edition of this report (1986). Its single census tract had by 2000 risen by 22 SES points and was in SES III. Its percent African American declined from 74 percent in 1970 to 48 percent in 2005-2009. Its SES Index is now 65.6. Its unemployment rate is 8%, about average for SES III. Median family income is a modest $\$ 41,042$ compared to $\$ 49,625$ in Kennedy Heights and $\$ 81,911$ in Oakley. This neighborhood is in a transition zone with SES I areas on two sides and SES IV on the other two sides.

14 East Walnut Hills. SES IV

East Walnut Hills SES score fell by 10.8 points in the 2000 to 2005-2009 period. Overall, the neighborhood has been stable since 1970. Only six neighborhoods rank above it on the SES Index. Its unemployment rate of 7 percent is higher than in most other SES IV areas. Median family income rose 2000 to 2005-2009 and its census tracts still rank 100 and 102 among the tracts on this variable.

15 East End. SES IV

In 2005-2009 the trend toward improvement continued and the East End is now overall in SES IV. Tract 43 now is at 103 on the SES Index. In Median Family Income $(\$ 223,333)$ it is only outranked by Tract 14 in the West End ($\$ 250,001$). Tract 44 is still in SES II. Its Education Indicator is 27 and its Family Structure Indicator is 33.7. It ranks 55 in SES among the city's 115 tracts. Part of the East End remains a working class neighborhood. After falling to 8.5 in 1990 the percent African American in the East End rose to 10.8 percent in 2000 and to 24.6 in 2005-2009. A look at Figure 2 illustrates the trend for the entire eastern riverfront to become SES IV. (The East End's Tract 44 remains SES II as does Tract 47.02 which is Linwood.) Much of Tract 44 is industrial/commercial or in the flood plain. The new school there had to be built on stilts.

16 California. SES IV

California, on the southeastern rim of the city below Mt. Washington and along the Ohio River moved from SES II in 1970 to the middle of SES III in 1980. It held this position in 1990 and moved up to SES IV in 2000. Only Mt. Adams, Mt. Lookout-Columbia Tusculum, Hyde Park and Mt. Lookout have a higher SES Index. Median family income is $\$ 150,658$ and 96 percent of the children live in two parent homes. The percent elderly is 15 percent. It was 16 percent in 1970. The unemployment rate is 5 percent.

17 Mt. Washington. SES IV

In 1970 Mt . Washington ranked 43rd among the neighborhoods. By 2005-2009 its rank had declined to 39. The neighborhood was 100 percent white or other in 1970 and the percent African American stands now at 4.7. Although it has absorbed some of the displaced Appalachians from the East End its unemployment rate is only 5 percent. The Family Structure Indicator ranges from 39.5 in Tract 46.01 to 82.3 in 46.03 . The poverty rate is 10.2 . The percent elderly has increased to 20 percent. There are 3,117 people over 60 in this neighborhood. Median family income is in the range of $\$ 59,115$ in Tract 46.03 to $\$ 73,144$ in Tract 46.02.

18 Mt. Lookout - Columbia Tusculum. SES IV

This area remained stable in the past 40 years with very small changes in its social indicators. Adjacent to the East End and Linwood as well as to Hyde Park and Mt. Lookout, it has some diversity. In 2005-2009, the poverty rate was 1.1 percent. There were 409 persons over age 60 (The percent elderly has been stable at 13 percent since 2000). There were no reported school dropouts according to the 2005-2009 data. The median family income, at $\$ 113,333$, is the seventh highest among city tracts. The percent African American is 7.2. Only 5 percent of the population has less than a high school education. The unemployment rate 2005-2009 was only 1 percent.

19 Mt. Lookout. SES IV

Since the boundary changes that created Linwood and Mt. Lookout - Columbia Tusculum as separate statistical neighborhoods, Mt. Lookout (tract 48) has been at the top of the heap among Cincinnati neighborhoods. Its SES score of 102.6 is marginally higher than the Hyde Park census tracts. Its median family income at $\$ 166,087$ is exceeded only by East End's Tract 43 and West End's Tract 14.

20 Linwood. SES II

Linwood is a working class heavily Appalachian neighborhood at the foot of Mt. Lookout and adjacent to the East End and ColumbiaTusculum. Its social indicators are improving and in the past decade it moved from the top of SES I to the lower part of SES II. Its poverty rate fell from 20 to 9.4 percent. Its median family income of $\$ 42,031$ is one of the highest in SES II. The dropout rate is 46 percent and the Education Indicator is 56.9. The percent elderly is 13 percent, down from 22 percent in 1990.

21 Hyde Park. SES IV

Hyde Park's social indicators changed little from 1970 to 2005-2009. It is second only to Mt. Lookout in its overall SES index. In 1980, the percent of the population over 60 had reached 24 percent. By 2000, this figure had declined to 17 percent where it remains. Hyde Park was surpassed by Mt. Lookout for the first time in 1990 in the overall SES index and by 2005-2009 Mt. Lookout also had a higher median family income. Tract 49 ranks 111 out of 115 on the Income Indicator.

22 Oakley. SES IV

Oakley has changed dramatically in classification since 1970. In 1970 its three census tracts were in SES II and III. In 2000 they were in III and IV. Now they are in II (Tract 54) and IV (52, 53). All three tracts declined on the SES Index in the 2005-2009 period. Tract 54 actually has a lower SES Index now than it did in 1970. The other two tracts improved steadily until 2000. The indicator which lowers its SES Index is the Family Structure Indicator (24.7). Oakley has a high percent of elderly (24 percent), an unemployment rate of 4 percent
and a poverty rate of only 8.4 percent. It is predominantly white (90 percent) as are its neighbors to the west and south but shares some elements of Norwood's and Madisonville's blue collar flavor at least in Tract 54. The area adjacent to Hyde Park has new upscale housing developments.

23 Madisonville. SES III

Madisonville, like Oakley, encompasses two social areas (Figure 2). Like College Hill, Oakley, Bond Hill, and other middle class/working class neighborhoods, it has needed to cope with massive racial or demographic changes. In 1990, Madisonville was almost 60 percent African American. By 2000, this percentage had fallen to 33 percent. In 2005-2009 it was back up to 55.80. Its overall SES index declined from 64.0 in 1970 to 53.7 in 1980. This went up to 60.1 in 1990 and to 69.9 in 2000 then fell to 62.3 in 2005-2009 for an overall decline of 1.7 points in the period of this study. Its median family income ranges from $\$ 35,530$ in Tract 55 to $\$ 63,561$ in Tract 56. Its unemployment rate is 11 percent. Madisonville has achieved the status of a stable integrated neighborhood but is still struggling. We believe it will improve as the national economy improves. In terms of income, Madisonville is at a median family income of $\$ 54,054$, in the middle of the third quartile neighborhoods. Its poverty rate was below average at 11.9 percent. Neighborhood organizations have worked hard to reverse Madisonville's decline. They have made progress but had a setback in the 2000s.

24 Pleasant Ridge. SES IV

Pleasant Ridge and Kennedy Heights are primarily residential neighborhoods on the northeast fringe of Cincinnati. They are only arbitrarily separated by city boundaries from suburbs such as Golf Manor and Amberley Village. Pleasant Ridge has experienced significant population loss and some racial change. The neighborhood was 39.9 percent African American in 2000 . This fell to 33.2 percent in $2005-2009$. The poverty rate now is 12.8 percent, less than the city average. In 1970, all three tracts were in SES IV. By 1980, only two remained in SES IV. The SES Index declined by ten points between 1970 and 2000. Things
turned around in the past decade and now all three tracts are in SES IV once again and the decline has stopped.

25 Kennedy Heights. SES III

Kennedy Heights, like Pleasant Ridge, has maintained a quality residential atmosphere despite demographic changes. It is known as one of Cincinnati's stable integrated neighborhoods. Its stability is now in question. Its one census tract, 58 , declined rapidly in the 1970s but by 2000 had reached an SES score of 77 . This declined to 55.6 in 2005-2009. Kennedy Heights has fallen from SES IV to the bottom of SES III in the past decade. Its rank among the neighborhoods fell from 34.5 to 25 . The unemployment rate is now 14 percent. Median family income is $\$ 49,625$ and the poverty rate is 11.1 percent. The Family Structure Indicator is low at 38.3.

26 Hartwell. SES III

Although Hartwell's SES Index has changed from 89.2 in 1970 to 66.4 in 2005-2009 its rank among the neighborhoods changed little (from 33 to 32.5). During the 1990s the Family Structure Indicator declined from 71 to 58.5 as the neighborhood experienced racial and other demographic change. It has a small but growing Hispanic population. Hartwell is a neighborhood of over 5,000 people and remains in the upper half of SES III. Its unemployment rate is only 5 percent. It is 28.8 percent African American.

27 Carthage. SES II

Carthage in 2000 was a relatively stable blue collar neighborhood near the top of SES II (Figure 4 a). It failed to hold this position in the current ACS data. Its SES Index in 1970 was 50.7. It declined to 39.8 in 1980 , rose to 47.8 in 1990 , rose to 53 in 2000 then fell to 42.2 in $2005-2009$. Its unemployment rate is 9 percent, about the regional and national average. The African American percentage increased from 5.8 in 2000 to 31.7 in 2005-2009. The poverty rate went up from 6 to 24.7 percent during the decade. The Family Structure Indicator fell from 58.7 to 45.6. The Education Indicator is now 22.8 percent and the median family income is $\$ 39,798$. Carthage has more people
over 60 (25 percent) than it did in 2000 and has seen an increase of 685 percent in its Hispanic population (322 in 2005-2009).

28 Roselawn. SES II

Roselawn began serious decline in the 1980s and this has continued. Its SES score in 1970 was 86.1 and rose to 89.8 in 1980 . It has declined at least 10 points in each decade since and now stands at 44.1 which puts it in SES II. In 1990 Roselawn had the highest percentage of elderly in Cincinnati at 29. Now its population over 60 is only 17 percent. There is a large number of children under 5 (320) and the poverty rate is 23.2 percent. It has a Hispanic population of 346 , Cincinnati's sixth largest. The African American population increased from 6.8 percent (Table 4e) in 1970 to 65.7 percent in 2005-2009. Roselawn has a great housing stock and a diverse and creative population. We expect it will begin to stabilize as the economy improves.

29 Bond Hill. SES II

The 2005-2009 numbers do not confirm our prediction in 2004 that Bond Hill, which had declined rapidly, would stabilize. The decline has continued. The 2000 SES Index of 47.2 fell to 35.9 in 2005-2009. The percent African American remained virtually the same at 92.7 percent. Unemployment rose to 19 percent. The poverty rate fell to 17.8 percent. The Family Structure Indicator was low at 25 percent. Like Roselawn, Avondale, East Price Hill and Westwood and other neighborhoods which have experienced rapid change, Bond Hill needs continued efforts to support newcomers and long term residents in their community building/ stabilization efforts. There are 268 children under 5 and 1,384 in the 5-17 age group. The percent elderly has remained stable at around 21 percent.

30 North Avondale - Paddock Hills. SES III

In 1990, North Avondale held relatively the same rank in SES that it held in 1970. In 2000 it fell below its 1970 rank as it had in 1980 (Table 9). During the past decade (2005-2009) North Avondale experienced another nine point drop in its SES Index (Table 2a) and went from
near the bottom of SES IV to near the top of SES III. Unemployment (9 percent) and joblessness (3,904 people) are a concern. The median family income of $\$ 59,500$ though the third highest in SES III is $\$ 30,000$ below that of, e.g., Clifton. The Family Structure Indicator of 52.2 also lowers North Avondale's SES score. It should be noted that a high proportion of college (Xavier) students could be significantly affecting the income data for this area. This is also true of the area around the University of Cincinnati. By 2000 North Avondale had stabilized regarding racial change at about a 5050 ratio of African Americans to white.

31 Avondale. SES I

Avondale has lost 20 points on the SES Index since 1970 but its score rose by 1.4 points from 2000 to 2005-2009. In Table 4c we rated it as stable, but it has fallen from 17 to 7 in rank (Table 9) since 1970. In 2005-2009, the poverty rate rose to 37.5 percent affecting 985 families. Joblessness is 44 percent and the unemployment rate is 15 percent. All five tracts maintained their 2000 SES quartile positions. Tract 34 has an income of $\$ 7,243$ which is lower than that of any Over-the-Rhine tract. The Family Structure Indicator is low in all five tracts. These data make clear that Avondale's problems are deep and not getting better. Avondale is part of a larger Cincinnati area which includes Evanston and Walnut Hills. These neighborhoods have experienced many strains due to population shifts and disinvestment. The investments made in economic development, the Empowerment Zone and Community Action have not created a big statistical difference but the tiny gain in the SES Index is encouraging. It is important to the entire region that community development efforts in these close-in Cincinnati neighborhoods succeed.

32 Clifton. SES IV

For many years, Clifton has been an island of affluence in the Uptown section. The neighborhood rank is 42 . The SES Index started off at 93.4 in 1970, rose to 102.1 in 1990 and has declined to 87.7 in 2005-2009. The 11 point decline in the 1990s corresponded with declines in some other Uptown neighborhoods. Changes in the university-medical complex may have
been a factor. The decline of 3.1 points from 2000 to 2005-2009 was not significant. There is a huge income gap between the three tracts (Appendix II). The same is true in the Family Structure Indicator which ranges from 58.4 in Tract 70 to 83.6 in Tract 71. The unemployment rate at 8 percent is the highest in SES IV. It involves 433 individuals.

33 Winton Place. SES II

Winton Place improved its SES score from 1970 to 1990 and has declined since. It ranks just above Bond Hill, Linwood and Over-the-Rhine among SES II neighborhoods. Its unemployment rate is 7 percent, its Education Indicator 21.3, and its Family Structure Indicator only 22.1. The median family income in 2005-2009 was $\$ 42,173$ close to the median for Cincinnati census tracts.

34 Northside SES III

Northside has had a bumpy ride in its renewal efforts with its SES Index falling to 46.9 in 1980 and climbing to 61.2 in 2005-2009. Three of its four census tracts moved up one quartile and Northside is now in SES III. Unemployment is 8 percent, poverty at 13.5 percent and the percent African American at 32.3 (down from 37.5 percent in 2000). Northside's renewal comes at a time when Mt. Airy and Winton place, its neighbors, are experiencing decline. Tract 74, still in SES II, has some problems. Median Family Income in this tract is $\$ 32,882$ and the Family Structure Indicator is only 4.9 percent, one of the city's lowest. Northside seems to be well on its way to becoming a stable integrated neighborhood. The positive change we predicted in the Fourth Edition is now occurring.

35 South CumminsvilleMillvale SES I

This neighborhood ranked 7th from the bottom among Cincinnati neighborhoods on SES in 1970. Since 1980 it has ranked at or near the bottom of the scale (Table 9). Its SES Index is now 11.6, the city's lowest. Unemployment stands at 27 percent, poverty at 56.9 percent and the Education Indicator is 41.8 . Only 8.3 percent of children under 18 are in two parent homes. Some of South Cumminsville-Millvale operates under public housing regulations
which require residents to be low income. At $\$ 15,732$ median family income in Tract 77 is the 11th lowest in Cincinnati. The neighborhood is 90 percent African American. Almost one third of the housing units are public housing.

36 Winton Hills. SES I

Winton Hills has an even higher percent of public housing (61.3) than South Cummins-ville-Millvale. It ranked 9th among the neighborhoods in 1970 and now is tied for third from the bottom. Its SES Index is now 29. The disastrous period for Winton Hills was the 1970s when the SES Index fell from 32.4 to 19 , the population increased from 7,273 to 7,711 and the percent African American increased from 75.2 to 88.8. The tract boundary also changed slightly. The most important component of change was the Family Structure Indicator. During the 1980s no further decrease in SES occurred. The index rose in 2005-2009 to 29, taking Winton Hills a bit further away from the lowest score of 11.6 .

Because it is a public housing area, Winton Hills is poor by definition. The poverty rate is the city's second highest at 66.4 percent (down from 68 percent in 1990). Median family income in 2005-2009 was $\$ 10,135$. The poverty rate among female headed families is 65.3 percent. In Winton Hills 80.3 percent of the households are female headed. The percent African American has declined to 82.7. The Education Indicator declined from near 50 in 1980 to 31.7 and the dropout rate is 25.8 , down from 42.7 percent in 2000 . The population has declined almost half to 4,801 since 1980.

37 College Hill. SES III

Only five neighborhoods have lost more points in the SES Index than College Hill since 1970 (Table 9). In 2005-2009, the percent African American rose to 54.2 after declining slightly in the 1990s. College Hill is a large and diverse neighborhood of over 16,000 people. In Tract 82.01 median family income is $\$ 57,357$ and the Family Structure Indicator is 46.5 , compared to $\$ 63,542$ and 67.7 in Tract 111. The Education Indicator is low in all five census tracts meaning most of the population has at least a
high school education (Appendix II). College Hill has many assets and is still near the top of SES III. It holds promise of becoming a stable integrated community. Its recent decline may be related to two successive recessions.

38 Mt. Airy. SES I

Mt. Airy declined more than any Cincinnati neighborhood since 1970 , losing 60.1 points on the SES Index. There were two major factors in Mt. Airy's slide in SES index from 99.3 in 1970 to 72.6 in 1990. First in 1990 a new census tract was added which had a different demographic base. Secondly in the 1980's the original tract 83 itself declined on all components of the SES index except income. Change in the Family Structure Indicator was a major factor. Almost half (45.5\%) of Mt. Airy families are now female headed. During the 1990's the African American population increased to 43.8 percent. From 1970 to 2000 , Mt. Airy lost 44 points on the SES scale. The change within predominantly white Tract 83 was more gradual than in the more integrated tract 85.01. Tract 85.01 went from 8.8 percent African American in 1980 to 34.8 in 2000 . It fell from SES III to SES II. Mt. Airy ranked near the top of SES II in 2000. In 2005-2009 it lost another 16 points on the SES Index and fell to the top of SES I. At 54.1 percent, Mt. Airy is now a neighborhood with an African American majority. The changes in Mt. Airy are part of a general westward movement of Cincinnati's inner city population. This parallels the decline of East Price Hill and Westwood and on the east side, that of Bond Hill. Change in Mt. Airy may have been accelerated by the closing of the English Woods public housing project in the 1980s.

39 Fay Apartments. SES I

The SES index for this neighborhood has fluctuated with decisions regarding ownership and who would live there. The SES index rose from 1970-1980 and by 1990 had declined to the city's second lowest. In 2000 Fay Apartments' SES Index at 15 was the city's lowest. Change factors included all five SES variables. Fay Apartments had fallen from the bottom of SES II to the bottom of SES I, a full quartile, since 1980. Changes in ownership and tenancy may 100
have affected the social indicators. The poverty rate is now 71.5 percent and 82.7 percent of the families are female headed. The poverty rate is the city's highest and the percent female headed families is second only to that of South Cumminsville-Millvale.

40 North Fairmount-English Woods. SES I

Tract boundary changes in 1980 affected this neighborhood's SES Index. By 2000, the newly defined area (Tract 86.01) experienced further decline in SES Index and then ranked with Fay Apartments and South Cumminsville-Millvale at the bottom of the SES scale, ranking second. Things improved in the 2000s and now this neighborhood has moved to a rank of 10 and is near the top of SES I. What changed? The poverty rate dropped from 51 to 27.7 ; the percent female headed families fell from 66 to 45.1, median family income rose from $\$ 13,966$ to $\$ 31,176$, more than doubling. The Education Indicator fell from 50 (\% adults without high school diplomas) to 39.4. The unemployment rate dropped from 25 to 20 percent. The gains in income, education, and unemployment were large enough to offset the negative impact of a change in the Family Structure Indicator. In fact, the usual correlation between female headed and poverty does not hold for this neighborhood nor for Bond Hill. The poverty rate of female headed households is only 21.4 percent compared to 27.7 for the total population. Another dramatic change in the past decade was a drop in percent African American from 84.8 to 65.7. The underlying cause of the change was the closing of the English Woods public housing project displacing primarily poor African American families. The population shrank from 4,565 in 2000 to 3,379 in 2005-2009.

41 South Fairmount. SES I

South Fairmount lies in a hollow which connects the Mill Creek industrial valley to Price Hill and Westwood. A working class neighborhood, once partly Italian, then Appalachian and now partly African American was ranked 13 (from the bottom) among the neighborhoods in 1970. It ranked 16 in 1980, 11 in 1990, 9 in 2000 and rose to 11 in 2005-2009. Tract 87 at
the bottom of the hill is SES I and Tract 89 is SES II. Unemployment for South Fairmount is 16 percent, poverty at 38.3 . The Education Indicator is 47.5 and 14.6 , respectively, for the two tracts. Of the two tracts, 87 has the higher median family income but has lower SES because of the Overcrowding Indicator of 9.9. In 1970, South Fairmount was predominantly white and Appalachian. That is still true of Tract 87 but the neighborhood is now 49.7 percent African American.

42 Lower Price Hill. SES II

The SES index was 21 in 1970, fell to 18.6 in 1980 and declined further to 15.6 in 1990. In 2000, the SES Index rose for the first time in three decades. Its rank among the neighborhoods went from 3 (from the bottom) in 1970 to 6 in 2000 - its SES indicators not being significantly higher than South CumminsvilleMillvale, Over-the-Rhine, Fay Apartments, Winton Hills and North Fairmount, the other neighborhoods at the bottom. In 2000, the poverty rate was 56 percent (down from 65 percent in 1990), the third highest in the city. The percent of female headed households increased from 47 to 49.

Improvements occurred in the 2000s and Lower Price Hill rose to a neighborhood SES rank of 21 putting it in the upper half of SES II. The unemployment rate rose to 37 . The Education Indicator fell to 47.8 and the Family Structure Indicator fell to 41.9. The population fell to 758 and the Census Bureau combined Tract 91 with Tract 1 (Queensgate). The school dropout rate is still the city's highest at 64 percent but that only accounts for 16 young people according to the American Community Survey. Because of the small population of the neighborhood and the small sample size we acknowledge that the confidence levels of this data is not acceptable and it should not be the sole basis for any decision making.

43 East Price Hill. SES I

East Price Hill ranked 19th among the neighborhoods in 1970. It has declined precipitously in SES and the index is now 29. The neighborhood's rank has slipped to being tied for 3 behind only South Cumminsville-Millvale and

Fay Apartments (Table 9). The population is still high at 18,798 . The African American population was .4 percent in 1970 and was 34.6 percent in 2005-2009. The Hispanic population increased from 240 in 2000 to 1,393 in 2005-2009 and constitutes Cincinnati's largest concentration of this minority group. Most of the white population is still Appalachian. The changes in East Price Hill compare to those in Mt. Airy and Bond Hill and are part of the general movement of Cincinnati's low income population to the west. The dropout rate (Table 6a) fell slightly to 22 percent but there are 3,871 adults without a high school education and over 1,000 estimated to be functionally illiterate. Strong community development efforts there are faced with great challenges as poverty declines in the core city and expands in "second ring" communities. The poverty rate is now 31.4 and this involves 1,201 families and many more if the 200% of poverty level is applied. The Family Structure Indicator ranges from 16.2 in Tract 96 to 48.2 in Tract 92 . Median family income ranges from $\$ 22,788$ to $\$ 38,607$. Only 7 neighborhoods have declined more since the 1970 census.

44 West Price Hill. SES II

Since 2000 the SES Index fell to 53.4 and the neighborhood rank fell by 10 to 22 . Tract 98 fell to SES I and the neighborhood as a whole is near the top of SES II. Now West Price Hill has tracts in all four social areas just as Westwood does. West Price Hill's decline is part of the same broad patterns as those described in the sections on Mt. Airy, Bond Hill, Roselawn, and East Price Hill. This neighborhood now has 2,280 adults without a high school education and 431 who may be functionally illiterate. There are 2,299 people over 60 but they are only 12 percent of the population. The dropout rate is low at 5.2 percent. There are over 5,000 children under 18. Unemployment is at the national average of 9 percent. This neighborhood needs strong civic activities and effective education and social services to support newcomer families and ease the strains of neighborhood change. Part but not all of the change is racial. The percent African American was 0.2 in 1970 and 17.6 in 2005-2009.

There are now 718 Hispanics, the city's third largest concentration. Tract 98 is heavily Appalachian.

45 Westwood. SES III

Westwood's SES index fell 36 points in the last three decades. In 1970, all five tracts were in SES IV. By 2000, one was in SES I, one was in SES II, two in SES III, and three still in SES IV. 1980 census tract boundary changes included part of old Northwest Fairmount in Westwood. In the older Westwood, tract 109 experienced a 10 point drop in the 1990s and in the area that was once tract 100 , now $88,102.01$, and 102.02, also experienced significant decline (Appendix III). The authors attribute part of the change to an influx of both white Appalachians and African Americans. Westwood's poverty rate is 16.1 percent and because the neighborhood is so large this gives it the third highest concentration of poor families in the city. There are also nearly 814 African American families below the poverty level and the third highest concentration of poor whites in the city (Table 4d). Westwood has become a very diverse neighborhood.

East Westwood has formed its own neighborhood association. The tracts in that section are still SES III and IV and, along with two tracts in West Price Hill, still have much of the social composition of the 1970s West Side. West Siders complain that they have borne an undue share of the cost of population shifts in Cincinnati. We have no judgment on this but note that Walnut Hills, Avondale, and Mt. Auburn, for example, saw similar changes starting two decades earlier.

46 Sedamsville-Riverside. SES

I

Sedamsville was relatively stable from 19702000. It ranked 5 th in 1970 , improved to 14 in 1980 held the rank of 12 in 1990, 13 in 2000, then dropped to 9 th in 2005-2009 losing its SES II rank. It shared this fate with its neighbor to the east, Riverside-Sayler Park. Its percent African American changed from . 7 in 1980 to 22.9 in 2005-2009. Unemployment rose to 27 percent. The poverty rate rose from 17 percent in 2000 to 38.9 and the Family Structure Indi-
cator fell to 37.1. Median family income is now $\$ 26,250$ down from $\$ 36,500$. The population of 1,714 is down from 2,144 in 2000 . The Education Indicator is 49.9, meaning almost half the adult population lacks a high school education. One in five residents is over 60 and one in 5 are under 18. Changes in this neighborhood are part of the shift of poverty to the west side.

47 Riverside-Sayler Park. SES

 IIn the past decade, the trends noted in the Fourth Edition for Riverside-Sayler Park accelerated beyond belief. The neighborhood dropped in rank from 31 to 6 . Its neighbor, East Price Hill, dropped from 14 to 3rd (from the bottom). It is unusual for a neighborhood to change so dramatically in one decade. There is some racial change. The percent African American rose from 18.0 to 29.2. The Family Structure Indicator fell to 15.8 , median family income to $\$ 33,625$, and the Education Indicator rose to 22.7 , still not very high compared to other SES I neighborhoods. The unemployment rate, at 8 percent, is less than the city average.

Recent rises in the poverty rate and school dropout rate also give some cause for concern. As elderly residents age and die or move out they are probably being replaced by younger families with different needs. Forty percent of the families are female headed and these and other working families need supports such as day care.

48 Sayler Park. SES IV

Sayler Park has been relatively stable during the four decades reviewed in this study. In 2005-2009 Sayler Park improved in neighborhood rank from 27 to 37 and it is now in SES IV. The dropout problem noted in the Fourth Edition disappeared. The Education Indicator stands at 11.5. The Family Structure Indicator is 56.6. The change in racial composition went from .8 percent African American to 1.1 percent.

Chapter 10

Health and Well-Being

When it comes to what gives rise to the good life and a global sense of well-being, place matters.
(Markus, Plaut, \& Lackan) ${ }^{1}$

Our region recently embarked on a path towards improving the quality of life for all through the Bold Goals initiative (www.uwge. org). Along with the leadership of United Way of Greater Cincinnati, more than 225 organizations have endorsed this truly regional effort. The first nine chapters of this report illuminate the rationale behind the need for Bold Goals to be established for our region in the areas of Education and Income. These chapters make clear the challenges our neighborhoods face as their citizens struggle to meet education pathway benchmarks and struggle to obtain the skills needed to compete for higher wage jobs. Bold Goals were also set in a third area - Health. While not always readily recognized, Education, Income and Health are closely related. Health cuts across Education and Income - essentially extending throughout the entire lifespan. Good health helps to ensure children are prepared for kindergarten and that they succeed during their school years. Later, health can play a key role in success in post-high school education - regardless of whether one pursues additional non-degree workforce training or a post-secondary degree. Finally, poor health can provide a variety of barriers to keeping families from being financially stable. This chapter discusses the relevance of health at the neighborhood level, and discusses the broad array of factors that can lead to challenges for our neighborhoods and their residents in the area of health.

Neighborhoods have emerged as a potentially relevant concept for understanding the health and well-being of individuals. Whether people are healthy or not is determined not only by the
person's genetic endowment, biological makeup, and life course choices and behaviors, but also by the conditions under which the person lives. ${ }^{2}$ A neighborhood is typically thought of as a specific geographic area, commonly identified by a proxy indicator such as census tract or other spatial or bureaucratic measure, with distinguishing characteristics related to its physical and social environments. A neighborhood's physical environment refers not only to its natural setting, but also to its human-made built surroundings in terms of housing quality, land use and zoning, street designs and transportation systems, businesses and shopping opportunities, educational and health care services, recreational and green spaces,

> A neighborhood's environmental conditions can promote health or put health in jeopardy.
and other features of urban design and public spaces. In addition, there are the exposures associated with those surroundings in terms of air and water quality, cleanliness, light and noise, proximity to hazardous substances, and other environmental conditions. The social environment consists of the social context within which people live, which includes social values and norms, cohesiveness or connectedness among neighbors and the resulting social capital, nature and types of diversity, degree of mutual trust, civic vitality and political empowerment, levels of safety and violence, and various features of the social organization of places. These physical and social environments do not exist independently, but are influenced by one another. For example, characteristics of the built environment such as the quality of public spaces can affect the nature of social interactions within the neighborhood, which in turn has consequences for the ability of neighbors to advocate for improved public spaces. ${ }^{3}$
Underlying and contributing to the nature of
these physical and social environments and subsequently to neighborhood differentiation is the level of inequalities in social and economic resources across neighborhoods as well as residential segregation. Defined as the geographic separation of persons into residential areas based on race, ethnicity, or socioeconomic position, residential segregation leads to the inequitable distribution of social and economic resources, which in turn can contribute to further residential segregation. ${ }^{3}$ The result is a concentration of persons with given racial/ ethnic characteristics, such as African American, white, Hispanic, or Appalachian, or given levels of socioeconomic status, such as poor or wealthy, or a combination of the two, such as poor whites or wealthy whites, in certain neighborhoods. Consequently, persons with more resources and power are able to locate in and advocate for neighborhoods with better environmental attributes. ${ }^{4}$ This has led to characterizing neighborhoods according to race/ ethnicity or socioeconomic disadvantage or deprivation based on measures such as those used in this report. ${ }^{5}$

A neighborhood's environmental conditions can promote health or put health in jeopardy. The social and economic features of neighborhoods have been linked to mortality, perceived health status, disability, birth outcomes, chronic disease, health behaviors, mental health, injuries, violence, and a number of other disease risk factors and health outcomes. ${ }^{6}$ Contaminants in the air, water, food, and soil and proximity to facilities that produce or store hazardous sub-

> Living in a poor, deprived, or
> socioeconomically disadvantaged neighborhood is generally associated with poor health.
stances can cause a variety of adverse health effects, including cancer, birth defects, respiratory illness, and gastrointestinal ailments. ${ }^{6-7}$ The built environment can influence lifestyle choices and positively or negatively impact not only physical health outcomes such as obesity, diabetes, and cardiovascular disease, but also
psychological well-being and mental health conditions such as depression. ${ }^{6.7}$ The array of values and norms of a society influence health behaviors and their associated health outcomes. ${ }^{7}$ Social or community support can add resources to an individual's repertoire of strategies to cope with change and foster health or the lack of such support can lead to unhealthy behaviors, early onset of disease, and premature mortality. If present, social stability, recognition of diversity, safety, good working relationships, and cohesive communities can provide a supportive society that reduces or avoids many potential risks to good health, particularly depression and other mental health problems, violence-related trauma and homicides, and disease incidence and mortality, particularly cardiovascular disease. ${ }^{7}$

Studies examining the relationship between neighborhood census characteristics, such as those examined in this report, and health outcomes have concluded that living in a poor, deprived, or socioeconomically disadvantaged neighborhood is generally associated with poor health outcomes including greater mortality, poorer self-reported health, adverse mental health outcomes, greater prevalence of chronic disease risk factors, greater incidence of diseases such as cardiovascular disease and diabetes, and adverse child health outcomes. ${ }^{3}$ These results hold even after taking into consideration the individual characteristics of the neighborhood residents, such as race/ethnicity and socioeconomic status. One only needs to look at the data from the Cincinnati Health Disparities Report, ${ }^{8}$ the Greater Cincinnati Northern Kentucky Community Health Status Survey, ${ }^{9}$ and the Cincinnati Health Department Neighborhood Mortality Data Report ${ }^{10}$ to attest to the applicability of these findings to the City of Cincinnati.

The Health Foundation of Greater Cincinnati's Greater Cincinnati Northern Kentucky Community Health Status Survey (GCNKCHSS) provides more specific examples of the relationship between neighborhood and census characteristics, and health. The GCNKCHSS has studied health in our neighborhoods, counties and region since 1997. This rich set of data
provides one of the most comprehensive overtime views of the health of a community in our nation.

As a regional dataset, the number of interviews in any one neighborhood is limited. However, in 2010 The Health Foundation conducted a number of interviews that allows us to draw conclusions about the City of Cincinnati as a whole, and about two City of Cincinnati neighborhoods: Avondale, a SES I neighborhood, and Price Hill, SES I and II. As chapter nine suggests, these neighborhoods experience struggles in the Bold Goal areas of Education and Income. The same is true in the area of Health.

One regional Bold Goal for Health is that by 2020, at least 70 percent of our community will report having excellent or very good health. Across our region, about half of residents say they currently experience excellent or very good health. That figure is lower (44% of residents) in the City of Cincinnati as a whole. Even fewer residents of Price Hill (41\%) or Avondale (31\%) report excellent or very good health than is the case in the region or the City. Health challenges for Avondale and Price Hill residents, and residents of other areas of the City, may also frequently result in reduced quality of life. Extended or chronic health problems lead to challenges with education and employment.

A second regional Bold Goal for Health is that by 2020 at least 95 percent of the community will report having a usual place to go for medical care (this is sometimes referred to as a "medical home"). Across our region, about 84 percent of residents currently have a usual place to go for medical care. However, fewer residents of Avondale (80\%), the City of Cincinnati as a whole (79\%) or Price Hill (77\%) report they have a usual source of care. The lack of a usual source of care can be due to a variety of factors, including accessibility and cost. Good health and a usual source of care can be related: those who have a usual source of care are more likely to seek appropriate and timely healthcare when they need it.

The dataset from 2010 also shows that neighborhoods can have more unique characteristics
of health. For example, while the percent of residents living in Price Hill, the City and region who report high blood pressure are similar, more residents of Avondale report having been told they have high blood pressure. And, while the percent of residents living in Avondale, the City and region who report heart trouble or angina are similar, more residents of Price Hill report having been told they have heart trouble.

While these few selected data points show there is variation in the health of Greater Cincinnati residents depending on whether they live in the region, the City or in a specific neighborhood, there is a lack of scientific consensus about what it is about neighborhoods that affects health. One argument is that the physical and social environments of neighborhoods, individually and interactively, create an environmental "riskscape" which affects health across the life course through a dynamic inter-

> Neighborhoods vary in terms of a number of characteristics which can contribute to the health and wellbeing of their residents.
play between stress and behavior moderated by one's genetic makeup and biological responses. ${ }^{3}$ While acute stress can be beneficial and motivational, it can also lead to unhealthy coping behaviors such as overeating, smoking, heavy alcohol consumption, and excessive caffeine dependence, particularly when these behaviors are coupled with environmental factors. For example, consumption of high-fat foods may be more readily consumed if fast food restaurants are easily accessible in the neighborhood. ${ }^{4}$ However, long-term exposure to psychosocial stressors in the environmental riskscape, such as persistent poverty, material deprivation, environmental hazards, lack of services, social disorganization, and other detrimental environmental conditions, may lead to chronic stress, which can weaken the body's defense system. ${ }^{11}$ When faced with stressful situations, a person's body reacts biologically to that situation through its stress-response systems. This abil-
ity to respond to stress, known as allostasis, can become compromised when a person is exposed to stressful situations over prolonged periods of time during the entire life course. The cumulative physiological degradation of the stress-response systems over time, referred to as allostatic load, can lead to "wear and tear" on major organ systems, thus, increasing one's susceptibility to disease and premature mortality. Higher allostatic loads have been linked to socioeconomic status as well as a number of physical and mental health conditions in both adults and children, including hypertension, obesity, diabetes, cardiovascular disease, cognitive and physical impairment, autoimmune and inflammatory disorders, posttraumatic stress disorder, and mortality. ${ }^{12}$ In particular, children living under adverse conditions, such as poverty, poor housing and neighborhood conditions, or homes with unresponsive or harsh parenting, may be even more susceptible to the effects of cumulative-risk exposure and allostatic load, putting them at greater risk for premature morbidity and mortality. ${ }^{13}$

However, it is not appropriate to commit the ecological fallacy of assuming that all persons living in, for example, a low socioeconomic neighborhood have or will have poor health. Positive health outcomes may result even in the presence of detrimental environmental exposures when other strengths or resiliencies are present in the riskscape or when the neighborhood conditions are modified by in-dividual-level characteristics and behaviors. For example, some individuals may have genetic endowments and biological makeups that make them more vulnerable to adverse neighborhood conditions, while others may have the personal and financial resources that allow them to overcome deficiencies or hazards in their neighborhoods. ${ }^{3}$ Also, some persons may have adopted healthy lifestyle behaviors, such as physical activity, healthy diets, proper sleep patterns, and relaxation techniques, or established social support networks to counteract the effects of environmental psychosocial stressors.

Given that a person's health and many of the underlying place-based determinants of that
health strongly influence the person's wellbeing as well as contribution to society, the question is what can be done to improve the conditions under which the person lives. As Richard Couto stated in a forward to a book on the health and well-being of Appalachians ${ }^{14}$, simply blaming individuals for having poor health due to some inherent shortcomings or crediting them for good health is inappropriate. The context of people's lives is an important determinant of their health and the riskscape posed by that context puts some at greater risk for illness and premature mortality than others. Justice requires the removal of the inequalities that contribute adversely to the health and well-being of people. While policies such as redistributing resources or reducing residential segregation to minimize the inequalities in social and material resources across neighborhoods or specifically targeting certain neighborhood-level features such as increasing the availability of healthy foods ${ }^{2}$ sound appealing and would make substantial contributions to resolving the health disparities that exist across neighborhoods, often the political will to implement such broad-based policies is lacking. Other approaches which look beyond the individual without completely removing the individual from the solution must be considered. Not every neighborhood is identical. Neighborhoods vary in terms of a number of characteristics which can contribute to the health and well-being of their residents and, thus, interventions to change the riskscape must be locally-based.

Community-based participatory research is one effective means that neighborhoods can adopt to build on their local assets to address local health disparities. According to this approach, communities identify their health issues of concern and then systematically collect local data to better understand those issues so that practical intervention and prevention strategies can be developed and implemented. ${ }^{15}$ When done right, community-based participatory research methods, such as those conducted and on-going in Lower Price Hill ${ }^{15}$ and other Cincinnati neighborhoods, ${ }^{16}$ can facilitate local neighborhood involvement in building the ca-
pacity to improve the health and well-being of its residents.

Although more work is required to fully understand the health disparities that exist across the neighborhoods in Cincinnati, the results of this report suggest where such disparities might exist. Research in other communities has clearly documented that neighborhoods with the lowest socioeconomic status have the greatest likelihood of poor health. Cincinnati is probably not an exception. Therefore, closer examination of the riskscape of those neighborhoods this report has identified as low socioeconomic neighborhoods is required. As stated by Kawachi and Berkman, "a critical key to meeting the health needs of individuals, their families, and their communities lies in improving the conditions they face in their neighborhoods, and an essential key to improving those conditions lies in learning how" (p. 346). ${ }^{17}$

Cincinnati as a Metropolis

This chapter is divided into three major sections. The first covers the Standard Metropolitan Statistical Area (SMSA) as it was defined in 1970 when the First Edition of this study was designed. This section provides comparative data over a forty year period for the same counties (Figure 13).

The second section provides a map and data analysis for the current 15 county Consolidated Metropolitan Statistical Area (CMSA) which includes the Hamilton-Middletown metropolitan area and additional counties in all three states which constitute the Primary Metropolitan Statistical Area (PMSA) (See Figure 14 and Table Appendix VI).

The third section provides data for the 20county service area for the Health Foundation of Greater Cincinnati. It includes Adams, Highland, and Clinton Counties in Ohio, and Switzerland, Ohio and Ripley Counties in Indiana (see Figure 15 and Table Appendix VII).

The maps in this chapter (Figures 13-15) and the tables, Appendices VI and VII and data analysis allow the reader and various agencies to view the social geography of our region across the various jurisdictional lines.

Section I: The Seven County Area

In 1970, the SMSA consisted of Hamilton, Warren and Clermont Counties in Ohio, Campbell, Kenton and Boone in Kentucky, and Dearborn County, Indiana. Figure 13 shows the four social areas. For a description of how the social areas are derived, see Chapter 1. To summarize: All of the census tracts in the 7-county area are ranked on each of the five variables described in Table 1a and in Appendix V. Their ranks are then averaged to derive the SES Index. The tracts are then arranged by SES rank and divided by four to derive the quartile divisions. The four quartiles are the four "social areas" of Figure 13.

SES I

SES I in a 7-county context appears as a set of low income enclaves shown in white in Figure 13. One is on Cincinnati's west side which extends north along the I-75 corridor and through several tracts near the Hamilton Avenue corridor. Another set of neighborhoods extends along the Reading Road and I-71 corridors starting in Over-the-Rhine and Cincinnati's West End. In Northern Kentucky, there is a T -formation along the Ohio and Licking rivers and three isolated tracts in Boone County and one in western Kenton County. There are other scattered rural tracts in western Hamilton County, western Dearborn County and in Clermont County. In Warren County, one tract has a prison population and there are three tracts in the Franklin area. During the 2005-2009 period, the poverty rate nearly doubled in SES I in the seven county area. It grew

> Over the period of this study, rural SES I tracts have been disappearing as urban sprawl brought more affluent people to rural areas. little or fell in the other social areas. Over the period of this study, rural SES I tracts have been disappearing as urban sprawl brought more affluent people to rural areas. Rural poverty still exists but the rural poor are often not the majority population in the various census tracts. A comparison of Figure 13 for 2000 (see Fourth Edition at www. socialareasofcincinnati.org) and 2005-2009 shows an expansion of SES I in the north central part of Hamilton County, the northwest of Warren County, several parts of Clermont County and on the eastern border of Boone County. In terms of race and ethnicity, SES I includes large concentrations of African Americans, Appalachians, and, more recently, Hispanics. Clermont County is Appalachian and most of the poor in Franklin Township (War-
Figure 13

Legend SES Quartiles SES II

ren County) are Appalachian.
Chapter Two describes how each of the four social areas can be used to target appropriate services. SES I should receive top priority for certain health, education, community development and social service programs.

SES II

In Figure 13, SES II is the light pink area. In Hamilton County it includes large sections of Cincinnati and its immediate environs. It also includes much of the western third of the county and four tracts on the far west side. It includes the southern half of Dearborn County, about half the area of Boone County, scattered sections of Kenton County, and sections along the Ohio and Licking rivers in northern Campbell County. In Clermont there are seven census tracts in SES II, mostly in the north and northeast. There are two SES II clusters in Warren County, north and south of Lebanon and in Franklin Township. Although much of the geographic area is rural (because of the sheer size of rural tracts) much of the population in SES II is urban. Needs in SES II areas include family support, day care, adult education, anti-crime efforts and other neighborhood stabilization programs such as various kinds of housing assistance. Many families can benefit from programs that help the unemployed and underemployed.

SES III

There are SES III tracts in all seven counties. SES III includes nearly half of Warren and Dearborn Counties and more than half of Kenton and Campbell counties. There are two SES III tracts in Boone County and 12 in Clermont County. Of the five SES variables, SES III in the remainder of the 7-county area is better off than the City of Cincinnati on income (\$71,619), Family Structure Indicator (75.3), and overcrowding (.9), but worse off on the Occupation (65.9) and Education (10.9) Indicators (Table 11c). Needs in SES III and SES IV areas include programs for seniors and outreach to the dispersed poor.

SESIV

A look at Figure 13 shows that the bulk of the geography of SES IV falls along three axes. One runs from southern Boone County on up through western Hamilton County. Another runs along both sides of the western Clermont County border through the eastern half of Warren County (excluding LCI and Franklin Township). The third axis goes through Cincinnati's affluent east side and the communities of Amberley, Glendale and Wyoming. Table 11 b shows the population and social indicator values of SES IV in the City of Cincinnati and the remainder of the SMSA (7 counties). See, for example, percent African American. In the City of Cincinnati, the percentages of the four quartiles are $61,35,29$ and 6 compared to 13 , 14,3 , and 2 for the remainder of the metropolitan area. All four social areas in the city have higher percentages of African Americans. A look at total African American population shows that of the nearly 14,500 African Americans who live in SES IV in the region, two thirds live outside the City of Cincinnati.

A comparison of Figure 13 with Figure II in the Second Edition of this study shows how affluence has spread to areas in Dearborn, Warren, Clermont and Boone Counties which were SES III or lower in 1980. Several tracts in western Hamilton County are also of higher status than they were in 1980.

The Changing Shape of the Metropolitan Social Areas

When we first created the seven-county social areas map in 1990 (Third Edition of this study), most of SES IV was in Hamilton County and much of the rural area was SES II or III. In 2000-

> The most dramatic expansion of SES IV is in Boone and Warren Counties (Figure 13). 2005 SES I ar-
eas in Hamilton County have expanded to the north and west and SES IV includes tracts in all seven counties. The most dramatic expansion of SES IV is in Boone and Warren Counties (Figure 13).

SES Areas by County

Table 11a provides the SES Index for the metro census tracts by county. An average SES Index is also provided for each county. Individual tract indexes (Appendix IV) show the great gap between inner city and most suburban areas. The lowest SES Index in Boone County is tract 701 with an index of 91 . The SES index for tract 501 in Newport (Campbell County), by comparison is only 24.6 which is similar to the low SES tracts in Cincinnati. The Campbell County range is between tract 501 which has an index of 24.6 and tract 523.02 with an index of 322.2 . In Clermont County the range in SES Index is from 85.4 (tract 402.04) to 334.2 (tract 403). In Dearborn County tract 803 has an index of 102.6 and tract 801.02 an index of 291.4. Dearborn County has only one tract in SES I. Boone County now has three. Campbell County, which includes Newport, has five. Kenton County, including Covington, has twelve. Warren County has 3 tracts, and Hamilton, 64 in SES I (seven fewer than in 2000). Table 11e shows income and poverty statistics for all seven counties. In 1990, Hamilton County had the third highest overall income in spite of having the highest poverty rate. In 2005-2009 it had the lowest. Warren County had the highest median family income and lowest poverty rate in 2000. In 2005-2009, Dearborn County had the lowest poverty rate.

SES by Tract in the SMSA

Appendix IV lists all the census tracts in the old seven county SMSA. Appendix IV can be used to look at the individual components of SES. If the reader wishes to know, for example, the census tracts with the worst overcrowding a glance at the overcrowding column will reveal that Tract 94 in Hamilton County is the most overcrowded, Tract 21 has the second worst crowding, etc.

The right hand column for overcrowding gives the rank. The left hand column gives the score expressed as a percentage of households having more than one person per room. See variable descriptions in Chapter 1 and Appendix V. After looking at all five SES ranks and scores for a given tract one can, see for example, that Tract 77 gets its low SES rank (at the bottom)
primarily because of its education and occupation indicator ranks, as ranks on the other variables are considerably higher.

The State of the Region

Does Cincinnati retain its 'integration potential' as claimed in previous editions of this study? As was the case in 1980, the core cities of the metropolis - Cincinnati, Covington, Newport, Dayton, and Bellevue were primarily in SES I and II. Although these lower SES areas expanded somewhat during the decade, especially on Cincinnati's west side, there were some hopeful signs too. First, there remain some high SES (III and IV) areas in the central city (Figure 13) and these areas are not isolated from but are adjacent to, lower SES areas. Second, much of the high SES area remains within Hamilton County and much of the high SES part of Kenton and Campbell Counties is

> As was the case in 1980, the core cities of the metropolis - Cincinnati, Covington, Newport, Dayton, and Bellevue were primarily in SES I and II.
adjacent to the inner city. Third, the news regarding racial change is not entirely negative. Within the city of Cincinnati, some neighborhoods have been able to increase the degree of racial integration, for example, Corryville and Evanston - East Walnut Hills. Others, like Mt. Auburn have been able to stem white flight before they became one race communities. Several communities such as Northside have remained remarkably diverse. In 1970, Cincinnati was 27.6 percent African American. In 2005-2009, it was 41.0 percent African American. In 1970, 77 percent of Cincinnati's African Americans lived in SES I and II. In 2005-2009, that figure was down to 58.2 percent. There is clearly a need for more progress in racial integration. It now needs to be noted that developments in Over-the-Rhine and the West End make the "inner city" even less contiguous now than in 1990. The pattern of SES I in Figure 13 shows an area along the Licking River, an area along the Mill Creek and an area along the Reading

Road corridor.
A look at the welfare/poverty ratio (Table 11b) says that Cincinnati's poor are less likely to be on public assistance than their suburban or rural counterparts except in SES I. A look at total households below poverty shows that more than 35,000 households in the remainder of the metropolitan area are below the poverty level. These are the "dispersed poor" discussed in Chapter 2.

High status areas in the suburbs remain segregated by class as well as by race. SES IV in the remainder of the metropolitan area (Table 11b) is 98 percent white or other.

Whether we look at the core cities or the broader region, socioeconomic integration is far from the norm. High status areas in the suburbs remain segregated by class as well as by race. SES IV in the remainder of the metropolitan area (Table 11b) is 98 percent white or other - up one percent from 1990. SES IV in the metropolitan area has an 8.7 percent poverty rate compared to 15.0 percent in Cincinnati's SES IV. Inequality between the central city and its suburbs is relatively new and not to be taken for granted. According to data assembled by David Rusk, an urban analyst, "in 1950 Cincinnati household incomes were equal to household incomes in the region(1). By 1990, Cincinnati household income was 76 percent of the average regional household income. Meanwhile the regional poverty rate rose slightly from 10.6 percent to 11.4 percent from 1970 to 1990. By contrast, Cincinnati's poverty rate doubled from 12 percent to 24 percent in the ten year span between 1980 and 1990(2)." In 2005-2009, the poverty rate for Cincinnati was 20.1 compared to 8.3 for the 7 -county region (Table 11d) and 40.5 percent of the region's poor families lived in Cincinnati. Rusk and other urban experts believe that unless the growing inequality between central cities and suburbs is halted through regional cooperation in planning and public policy, Cincinnati will join the ranks of declining regions. According
to Neil R. Pierce the need for regional cooperation is to resolve three issues (1) the social and economic chasms between the advantaged and disadvantaged (2) unchecked urban sprawl and (3) the lack of coherence in metropolitan governance (Rusk, op. cit, p. 6-7). Regional cooperation should include the capacity to develop long range plans in such areas as jobs, education, housing and transportation.

Demographic Description		SES I	SES II	SES III	SES IV
Total Population					
	City of Cincinnati	151,186	85,023	48,375	55,282
	Remainder of Metropolitan Area	169,477	267,019	409,009	464,828
Total Families					
	City of Cincinnati	30,504	15,688	10,876	11,415
	Remainder of Metropolitan Area	41,869	67,248	108,215	126,505
Total Housing Units					
	City of Cincinnati	79,249	43,012	26,431	29,342
	Remainder of Metropolitan Area	74,897	113,074	167,436	176,372
Percent Single Family Units					
	City of Cincinnati	39.5\%	43.2\%	49.8\%	52.5\%
	Remainder of Metropolitan Area	68.1\%	74.3\%	79.4\%	85.9\%
Total African American Population					
	City of Cincinnati	91,598	29,975	14,036	3,563
	Remainder of Metropolitan Area	22,368	38,350	13,628	10,923
Percent African American					
	City of Cincinnati	61\%	35\%	29\%	6\%
	Remainder of Metropolitan Area	13\%	14\%	3\%	2\%
Percent White or Other					
	City of Cincinnati	39\%	65\%	71\%	94\%
	Remainder of Metropolitan Area	87\%	86\%	97\%	98\%
Percent First Generation Immigrants					
	City of Cincinnati	3.3\%	5.0\%	4.4\%	4.1\%
	Remainder of Metropolitan Area	3.3\%	2.4\%	2.7\%	4.8\%
Total Households Below Poverty					
	City of Cincinnati	18,508	8,424	3,577	2,920
	Remainder of Metropolitan Area	11,990	10,978	10,680	5,936
Total Households on Public Assistance					
	City of Cincinnati	3,931	1,054	489	448
	Remainder of Metropolitan Area	2,241	2,112	1,889	1,345
Percent of Households on Public Assistance					
	City of Cincinnati	6.7\%	2.9\%	2.2\%	1.7\%
	Remainder of Metropolitan Area	3.4\%	2.0\%	1.2\%	0.8\%
Public Assistance / Poverty Ratio					
	City of Cincinnati	21.2\%	12.5\%	13.7\%	15.3\%
	Remainder of Metropolitan Area	18.7\%	19.2\%	17.7\%	22.7\%

Demographic Description		SES I	SES II	SES III	SES IV
Total Population 60 Years or Older					
	City of Cincinnati	22,269	12,667	8,000	10,877
	Remainder of Metropolitan Area	27,303	46,146	68,907	77,398
Percent 60 Years or Older					
	City of Cincinnati	14.7\%	14.9\%	16.5\%	19.7\%
	Remainder of Metropolitan Area	16.1\%	17.3\%	16.8\%	16.7\%
Total Population Under 16 Years					
	City of Cincinnati	37,248	13,017	8,170	8,729
	Remainder of Metropolitan Area	39,306	55,690	89,988	111,775
Percent Population Under 16 Years					
	City of Cincinnati	24.6\%	15.3\%	16.9\%	15.8\%
	Remainder of Metropolitan Area	23.2\%	20.9\%	22.0\%	24.0\%
Total Unemployed					
	City of Cincinnati	9,497	4,239	2,313	1,027
	Remainder of Metropolitan Area	7,741	10,244	11,843	11,476
Unemployment Rate					
	City of Cincinnati	14.3\%	9.4\%	8.3\%	3.1\%
	Remainder of Metropolitan Area	9.4\%	7.1\%	5.3\%	4.6\%
${ }^{2}$ Metropolitan area for this study includes seven counties: Dearborn (Indiana), Boone (Kentucky), Campbell (Kentucky), Kenton (Kentucky), Clermont (Ohio), Hamilton (Ohio), and Warren (Ohio).					

Cincinnati Metro and City Comparisons

Tables 11b, 11c, and 11d can be used to make comparisons between the city of Cincinnati and the remainder of the metro area as a whole. We can see, for example, that the percentage of single family homes in the metro area as a whole is much higher than that for the city. In SES IV (city area) the percent of single family homes is 52.5 percent, while a much higher rate (85.9\%) is found in SES IV in the metropolitan area. Table 11b also shows that the degree of racial segregation is even more extreme in the metropolis than in the core city. For example, in the city SES IV is 6\% African American. In the remainder of the metropolitan area, African Americans are only 2 percent of the population in SES IV, the same percentage as in

2000 (Table 11b). SES I and II areas outside the City of Cincinnati are becoming more integrated but SES III has gone from 9 percent African American to 3 percent. The concentration of poverty in the city is not as extreme as is the concentration of African Americans. While 62 percent of the seven county area's African American population lives in Cincinnati only 40.5 percent of poor families live in the city (Table 11d). Both of these percentages are down significantly from 2000 indicating less concentration of poverty and race. Households on public assistance are becoming more concentrated in Cincinnati. In 2000 less than half of these households lived in Cincinnati. In 20052009, many more than half lived in the city (Table 11b). Table 11f shows that the percent African American in each of the seven counties

TABLE 11C City of Cincinnati and Remainder of Metropolitan Area ${ }^{\text {a }}$ COMPARISON OF AVERAGE SES INDICATORS BY SES QUARTILES, 2005-2009				
Indicator Description	SES I	SES II	SES III	SES IV
Family Income Indicator (Median Family Income)				
City of Cincinnati	\$30,211	\$42,973	\$61,544	\$119,455
Remainder of Metropolitan Area	\$41,522	\$58,369	\$71,619	\$98,987
Family Structure Indicator				
(\% of Children in Two Parent Homes)				
City of Cincinnati	24.1\%	39.1\%	63.0\%	78.9\%
Remainder of Metropolitan Area	47.7\%	62.0\%	75.3\%	85.0\%
Occupation Indicator (\% Unskilled and Semi-skilled Workers)				
City of Cincinnati	76.5\%	62.5\%	54.3\%	42.7\%
Remainder of Metropolitan Area	78.2\%	72.1\%	65.9\%	52.6\%
Education Indicator (\% Age 25+ With Less Than a High School Diploma)				
City of Cincinnati	29.6\%	16.4\%	9.9\%	4.6\%
Remainder of Metropolitan Area	24.0\%	15.9\%	10.9\%	5.5\%
Crowding Indicator (\% Housing With More Than One Person Per Room)				
City of Cincinnati	3.3\%	1.3\%	1.3\%	0.2\%
Remainder of Metropolitan Area	3.0\%	1.1\%	0.9\%	0.4\%
${ }^{a}$ Metropolitan area for this study includes seven counties: Dearborn (Indiana), Boone (Kentucky), Campbell (Kentucky), Kenton (Kentucky), Clermont (Ohio), Hamilton (Ohio), and Warren (Ohio).				

remain virtually unchanged from 2000 and has changed little since 2000. Although the percentages have changed little, the raw numbers of African Americans increased somewhat in Hamilton, Kenton and Warren Counties from 2000 to 2005-2009.

> While 62 percent of the seven county area's African American population lives in Cincinnati only 40.5 percent of poor families live in the city (Table 11d). Both of these percentages are down significantly from 2000 indicating less concentration of poverty and race. Households on public assistance are becoming more concentrated in Cincinnati.

A look at the distribution of the elderly population in the Table 11b shows that SES III and SES IV in the city are the areas with highest
percentages. The highest percentages of youth (under 16) show up in SES I (Table 11b) for the city but not for the metro area. Unemployment rates are highest in SES I and II in the city. In the two upper SES quartiles there is less difference in the unemployment rates between the city and the metro area but in SES IV, the gap favors the city. In all four quartiles there is an income gap between the city and metropolitan area. A similar pattern is evident when city and metro are compared on the Family Structure Indicator (Table 11c). The gap on this indicator is extreme especially in SES I. In the metropolitan area's SES IV metro 85 percent of children under 18 live in two parent homes. The Occupation Indicator does not discriminate as clearly between the various social areas and between metro and city. The Education Indicator shows a gap between the various quartiles but not so much between the city and metro. In SES I city 29.6 percent of adults (over 25) have less than high school education. In SES I metro the Education Indi-

TABLE 11 D

City of Cincinnati as Percent of Metropolitan Area Totals, 2005-2009

	Cincinnati	Metropolitan Area	City as Percent
		(includes Cincinnati)	of Metro Area
Total Population	339,866	$1,650,199$	20.6%
Number of Families	68,483	412,320	16.6%
Percent African Amer- ican	40.9%	13.6%	---
Number of African American Persons	139,172	224,441	62.0%
Percent of Families Below Poverty	20.1%	8.3%	---
Total Families Below Poverty	13,772	16.6%	40.5%
Percent 60 Years and Older	15.8%	273,933	---
Total Number of Per- sons 60 Years and Old- er	53,813	19.6%	

In Appendix VI SES II tracts are the ones with an SES Index between 145.2 and 235. Occupation, Overcrowding, and Education Indicators are generally lower (a good thing) in SES II than in SES I. Family Structure and Family Income are generally higher (a good thing). The rural-urban difference in family structure noted above seems apparent in looking at Table Appendix VI. Some of the rural tracts have over 80 percent of children under 18 living in two-parent homes. Eighteen percent is more typical of an inner city tract. Rural tracts do not always come off well on the Education Indicator. In tract 9502 in Bracken County, for example, 33.9 percent of the adults have less than a high school education. The pattern, however, is that if a tract has an Education Indicator higher than 23 it is an urban tract. Income in SES II ranges from $\$ 12,089$ in Tract 3.02 (Hamilton) to $\$ 91,845$ in Tract 7.02 in Butler County. A median family income of about $\$ 45,000$ is more typical. One of the clearest patterns in the 15 -county region is that the southern counties in Kentucky and Brown County in Ohio are entirely SES I and II. The Indiana counties are almost entirely SES II and III. SES II is a very small area in Warren County which is otherwise mostly SES

III and IV.

SES III Upper Middle Quartile

SES III is, conceptually, the third ring of the metropolis. The reader can see elements of this in (dark pink) in Figure 14. There is also what might be called a fifth ring beyond the SES IV (red) areas. These tracts are scattered through Dearborn, Franklin, Warren and Clermont Counties. The SES III tracts in Butler County are the third ring of the Hamilton and Middletown urban areas. The SES Index ranges from 234.4 to 319.2. The median family income range is from $\$ 9,205$ in Tract 11 in Hamilton County to $\$ 105,536$ in Tract 242 in Hamilton County. Surprisingly the former tract has a Family Structure Indicator of only 0 meaning none of the children live in two parent families. On the high end, Tract 259 and Tract 7 in Hamilton County have a Family Structure Indicator of 100 meaning all the children under 18 live in two parent homes. See Chapter II for further concepts regarding the four social areas.

Social Areas of Cincinnati

cator is 24 . Overcrowding rates in the city are somewhat higher than those in the metro area as a whole.

Table 11d shows that in 2005-2009 20.6 percent of the Metropolitan area population lived in Cincinnati, 16.6 percent of the families, 62 percent of African American population, 40.5 percent of poor families and 19.6 percent of persons over 60 years of age.

Table 11e looks at poverty and female headed households. Most of the families below poverty live in Hamilton County. Kenton County comes in second. The more rural Dearborn and Boone Counties have relatively few families in this category. Campbell and Kenton Counties have poverty rates close to that of Hamilton County (10.4).

None of the counties except Hamilton and Kenton had a 20052009 African American population that exceeded 4 percent.

Table 11f examines the distribution of the African American population in the seven counties. None of the counties except Hamilton and Kenton had a 2005-2009 African American population that exceeded 4 percent. Most of the seven counties had an African American population of 2 percent or less.

Table 11 g shows the education statistics for the
region. There is not a wide range among the counties on any of the three education variables when percentages are used. The raw numbers do show a great difference. Hamilton County, for example had 74,702 individuals with less than a high school education compared to 4,039 in less populous Dearborn County.

Table 11h looks at joblessness and unemployment. Not surprisingly Hamilton County had the highest 2005-2009 unemployment rate (7.3). Clermont County was next at 6.8 percent. Joblessness is also most severe in Hamilton County (37.7) with Clermont County (36.1) in second place. By far the greatest numbers (as compared to percentages) of jobless and unemployed live in Hamilton County. Note: In all the above examples the figures for the metro area do not include the data from the City of Cincinnati.

Table 11e

METROPOLITAN FAMILY INCOMES AND FAMILIES BELOW POVERTY, 2005-2009

State	County	Median Family Income	Percent of Families Below Poverty	Percent of Households Headed by Females and Below Poverty	Total Families Below Poverty
Indiana	Dearborn	$\$ 65,621$	4.2%	2.3%	570
Kentucky	Boone	$\$ 75,260$	5.0%	3.0%	1,502
	Campbell	$\$ 68,713$	7.5%	4.5%	1,666
	Kenton	$\$ 65,283$	8.7%	5.9%	3,615
Ohio	Clermont	$\$ 67,340$	6.8%	4.1%	3,535
	Hamilton	$\$ 65,081$	10.4%	7.4%	20,553
	Warren	$\$ 81,216$	4.7%	2.8%	2,587

Section II: The Fifteen County Area

Figure 14 shows the fifteen county Consolidated Metropolitan Statistical Area (CMSA). Because more and more planning and service delivery efforts use this as a target area we have included it in the Fifth Edition for the first time. We have not assembled comparative data for previous censuses so part of the value of this section is to provide baseline data for future comparisons.

SES I The Lower SES Quartile

The census tracts in white in Figure 14 represent the bottom quartile on the SES index. The index is calculated by averaging the ranks of each of the 439 tracts on the five variables as described in Chapter 2 and Appendix V. These tracts are heavily concentrated in the middle third of Hamilton County. Only two are in Indiana. These are in Lawrenceburg and Rising Sun. In Kentucky, there are clusters of urban tracts along the Licking and Ohio Rivers, four tracts in the Florence-Erlanger urban area, all of Gallatin County, half of Grant and Pendleton counties and one of the three tracts in Bracken County. Back in Ohio, Clermont County has four tracts in SES I and Brown County has two both along the Ohio River near Higgensport and east of Ripley. Warren County has three tracts

> SES I and SES II should be major target areas for community investments in job creation, education, health and social services.
in Franklin and one in the tract which includes two prisons. In Butler County, all SES I tracts are in the urban centers of Fairfield, Hamilton, Trenton, Middletown, and Oxford.

SES I consists of two types of areas: urban centers with a declining industrial base and rural areas far removed from the metropolitan core. Rural counties have experienced changes in the agricultural economy and some have lost manufacturing jobs as well. Appendix VI shows the SES Index and rank and the indica-
tors and ranks of each tract on the five SES variables. Of the ten tracts with the lowest SES scores, five are in Hamilton County, two in Butler County, two in Campbell County, and one in Kenton County.

SES I and SES II should be major target areas for community investments in job creation, education, health and social services. Appendix VI can be used for very specific targeting. For example, the tract with the highest Education Indicator is 7.01 in Butler County. In that tract, 58.6 percent of the population 25 years of age or older has less than a high school education. Three Boone County tracts have Education Indicators of at least 25 percent. Butler County has a similar cluster and two tracts with an Education Indicator of over 35. The reader can see from these examples how to create a regional map for targeting adult education programs and workforce development programs.

As one might expect, the Family Structure Indicator is high in some of the rural counties. In some of the rural tracts in SES I, over 70 percent of the children under 18 live in two parent homes. Scores are not this high in Cincinnati even in the wealthier neighborhoods. There is some variation, however. In Tract 9501 in Bracken County (an SES I tract) the Family Structure Indicator (FSI) is only 43.2. In the three Pendleton County tracts, the FSI averages only 62. But even this rate is higher than for SES III in the city and these tracts in Pendleton County are SES I and II.

SES II Lower Middle Quartile

In Chapter 2, we described SES II (light pink in Figure 14) tracts as "second stage" neighborhoods because in the central city they surrounded SES I tracts and were considered a step up from the core inner city. In Figure 14 we can see that this model still applies somewhat for the urban core which includes Cincinnati, Covington and Newport. This model even applies in a somewhat irregular way to the Hamilton and Middletown areas. We have no such theory to describe the large SES II areas in the outer ring, more rural, counties.
Figure 14

SES IV "Fourth Stage" Neighborhoods

In the conceptual schema outlined in Chapter 2 , the upper quartile of census tracts on the SES index are the fourth stage of urban settlement. This schema makes some sense as we look at Figure 14. There are some exceptions. In Cincinnati there are a few SES IV areas in the urban core. These include Clifton, Mt. Adams, parts of the East End and the West End. On this regional scale even the Hyde Park, Mt. Lookout, East Walnut Hills cluster is relatively close in. In Northern Kentucky there are also close in SES IV tracts and the four stages are not so obvious as on the Ohio side. Some of the shape of SES IV in the region seems to be related to patterns of development in the I-75 and I-71 corridors. Others are part of what might be called a "return to the city" movement in some American cities.

The SES Index ranges from 319.6 in Tract 102.03 in Butler County to 471.3 in Tract 43 in Cincinnati's East End. Median family income ranges from $\$ 60,071$ in Tract 106 in Butler County to $\$ 250,001$ in Tract 14 in Cincinna-

The Education Indicator is very low (good) in this social area. In most tracts it is less than 10.
ti's West End. The Family Structure Indicator ranges from 34.1 in Tract 53 in Hamilton County to 100 in Tracts 526, 107, and 106 also in Hamilton County. Overcrowding is very rare in SES IV. The Occupation Indicator varies from 25 to 74 . The Education Indicator is very low (good) in this social area. In most tracts it is less than 10. In Tract 43 in Hamilton County it is 16. There is some dispersed poverty in SES III and IV. County level poverty statistics are available at www.factsmatter.info. See Appendix V for definitions of all variables.

TABLE 11 F

METROPOLITAN AREA DISTRIBUTION OF AFRICAN AMERICAN POPULATION, 2005-2009

State	County	Total Population Number	African American Population			Range Within Each Census Tract		
			Number	Pct., 2000	Pct., 2009			
Indiana	Dearborn	49,608	257	0.7\%	0.5\%	0.0\%		4.2\%
Kentucky	Boone	112,514	2,816	1.7\%	2.5\%	0.0\%		6.3\%
	Campbell	87,509	1,766	1.6\%	2.0\%	0.0\%		19.0\%
	Kenton	156,399	7,033	3.8\%	4.5\%	0.0\%	-	38.9\%
Ohio	Clermont	193,377	2,446	0.9\%	1.3\%	0.0\%		4.7\%
	Hamilton	851,867	206,189	23.4\%	24.2\%	0.0\%	-	100.0\%
	Warren	203,129	6,373	2.7\%	3.1\%	0.0\%		57.3\%

Table 11g

Metropolitan Area Adult Education Levels, 2005-2009

State	County	High School Drop-outs		Those Without High School Diploma		Functional Illiteracy	
		Percent	Number	Percent	Number	Percent	Number
Indiana	Dearborn	2.7\%	73	12.2\%	4,039	3.5\%	1,161
Kentucky	Boone	6.5\%	357	9.7\%	7,069	3.4\%	2,475
	Campbell	2.3\%	119	13.8\%	8,027	4.7\%	2,739
	Kenton	7.1\%	575	13.0\%	13,470	4.2\%	4,403
Ohio	Clermont	4.9\%	489	13.7\%	17,398	3.8\%	4,784
	Hamilton	5.6\%	2,829	13.2\%	74,702	3.4\%	19,328
	Warren	5.4\%	556	10.2\%	13,593	2.9\%	3,813

Table 11H
METROPOLITAN AREA JOBLESSNESS AND UNEMPLOYMENT RATES, 2005-2009

State	County	Jobless Persons		Unemployment Persons	
		Percent	Number	Percent	Number
Indiana	Dearborn	30.6%	8,244	6.7%	1,815
Kentucky	Boone	26.9%	16,868	5.3%	3,339
	Campbell	33.2%	15,639	5.9%	2,776
	Kenton	32.2%	27,374	6.0%	5,072
Ohio	Clermont	36.1%	36,444	6.8%	6,845
	Hamilton	37.7%	166,844	7.3%	32,380
	Warren	34.7%	36,981	5.8%	6,153

Section III: Metropolitan Cincinnati 20 Counties SES Quartiles

Figure 15 shows the four social areas in the 20 county Cincinnati region. The five variables that make up the SES Index (See Chapter 2) are shown in Appendix VII. This is the target area for the Health Foundation of Greater Cincinnati and Figure 15 can be used as a base map to display the health variables available at www.healthfoundation.org. Appendix VII demonstrates all the same features as those described in Section II above for the 15 county metropolitan area so that narrative will not be repeated here. The larger urbanized areas Cincinnati-Covington-Newport, Hamilton, and Middletown show up as having an SES I core (white) with radiating pink (SES II), dark pink (SES III) and red (SES IV) areas. There is a somewhat similar pattern in Clinton County except that the core city, Wilmington, is SES II.

The Outer Ring Counties

The outer ring of rural counties has its own pattern. Highland, Brown and Adams in Ohio, Bracken, Pendleton, Grant, and Gallatin in Kentucky and Switzerland in Indiana are entirely in SES I and II. In this respect, they resemble the inner city areas. Tract 9801 in Grant County, for example, has an Occupation Indicator of 78.7, Education Indicator of 22.5,

> The outer ring of counties has its own pattern. Highland, Brown and Adams in Ohio, Bracken, Pendleton, Grant, and Gallatin in Kentucky and Switzerland in Indiana are entirely in SES I and II.

Overcrowding Indicator of 3.2, Family Structure Indicator of 61.5, and an Income Indicator (median family income) of $\$ 50,891$. The SES I tract in Adams County on the same indicators is $77.8,25.4, .6,48.5$, and $\$ 42,295$. The one tract in Gallatin County (9601) has 82.4, $27,1.0,61.6$, and $\$ 47,714$. By comparison, the "worst off" tract in inner city Cincinnati (Tract 77) has $96.7,41.8,4.0,8.4$, and $\$ 15,732$. SES

II tracts in the rural fringe can have incomes as low as $\$ 22,784$ and as high as $\$ 56,000$. Occupation and Family Structure Indicators are high, the Overcrowding Indicator is low and the Education Indicator greatly varied. The Education Indicator varies from 11 to 33.9 in the outer ring tracts.

I ndiana Patterns

One might expect all the Indiana counties to be like the rural edge counties in Ohio and Kentucky, mostly SES I and SES II. A look at Figure 15 shows that only Switzerland County fits this pattern. Ripley County is SES II but has one SES III tract east of Batesville. Franklin County has three of the four social areas including an SES IV tract which is the most "outlying" SES IV area in the region. Dearborn County is the only outlying county to have all four social areas. Aurora is partly SES II; Lawrenceburg partly SES I. Together they provide an urban core with the full array of SES tracts. Ohio County is the only county to consist of only SES I and SES III tracts. Switzerland County is the only entirely SES II county and Gallatin County, Kentucky, across the river, is the only all SES I county.

Conclusion

Figure 15 and the associated Appendix VII provide a tool for monitoring the changing shape of the metropolis over time. Figure 15 can be used as a base map to plot such variables as poverty, race, health, and education. It can be used by colleges and hospitals to do client analysis and by health planners to study disease patterns in relation to SES and to plan services. SES I and II are, generally, the areas of highest need for various kinds of economic development, education programs and health and social services.

Findings and Policy Recommendations

Part of the intent of the original social areas of Cincinnati study was to create base line data which could be used to measure change over time. A socioeconomic status index consisting of five variables was supplemented by fifteen other variables which together comprised the base line data. The authors believe the use of a multivariate approach is more beneficial than selecting a single variable such as income or poverty. The socioeconomic status index, in particular, is a powerful tool in keeping track of trends in the neighborhoods and in the city as a whole. Adding a metropolitan area component to the second and subsequent editions acknowledges that the central city contains an increasingly small component of the area's population base and economy.

Because the SES index is based on a census tract's ranking in the five SES variables (Table 1a) in comparison to other tracts it provides a measure of the tract or neighborhood's relative position and is not a fixed number such as income measure. With this in mind some overall conclusions can be stated:

City of Cincinnati

1. The social areas within Cincinnati have remained relatively constant over time. For example, the SES IV areas are, in 2005-2009, pretty much where they were in 1970 . The SES IV area around Hyde Park has expanded. The SES IV area
in Price Hill and Westwood has diminished but is still there. Mt. Adams, East Walnut Hills and other areas

The social areas within Cincinnati have remained relatively constant over time. have been added but overall the high status and low status areas are pretty much where they were in 1970.
2. SES I has shifted somewhat to the west and northwest across Mill Creek and somewhat to the east along the Reading Road and Montgomery Road corridors.
3. Despite the persistence of overall patterns, dramatic shifts in a neighborhood's SES position can occur. Six former SES I tracts in Over-the-Rhine and the West End are now SES II, III, or IV. Fairview-Clifton Heights was all SES II in 1970. In 1990 two tracts had moved up to SES III and one to SES IV. In 2000, two were in SES II, one in SES IV. In 2005-2009 one was SES II and two were SES III.
4. SES decline associated with shifts in the African American or Appalachian populations is not necessarily permanent and irreversible. The data in Chapter 4 show that some of the neighborhoods that have experienced a great decline in the 70 s and 80 s had begun to stabilize by 1990. Much population movement is associated with

> Much population movement is associated with upward mobility on the part of minorities. position than the previous ethnic groups had achieved. Over time their circumstances improve to come more in line with the new social area with its better housing and schools, etc. Several predominantly African American or Appalachian neighborhoods improved in SES during the past decade (Table 4c and Table 9).
5. Some of the neighborhoods which have become home to significant segments of the African American middle class have begun to slow the pattern of declining SES. Avondale, East Walnut Hills and Pleasant Ridge, for example, fit this description. Bond Hill, Kennedy Heights and College Hill are still declining.
6. The tables in Chapter II show lists of neighborhoods which declined the most in various decades. In the 1970-1990 period, Bond Hill, Mt. Airy, Avondale, Kennedy Heights and East Price Hill topped the list. South Cum-
minsville-Millvale, Westwood, College Hill, Mt. Washington, and Fay Apartments were not far behind. In the 2000s the big losers on the SES Index (Figure 2g-2) were Riverside-Sayler Park (-38.4), West Price Hill (-22.2), Kennedy Heights (-21.4), Roselawn (20.2) and Mt. Airy (-15.7). Over the period of the study (19702005 to 2009), the greatest losses were Mt. Airy (-60.1), Bond Hill (47.7), Roselawn (42.0), Kennedy Heights (37.8) and Westwood (36.0). Neighborhoods with the greatest increases in SES score were East End (59.1), Mt. Adams (34.6), California (29.4), and Lower Price Hill (24.0). (Table 9).
7. By at least one measure Cincinnati made progress in racial integration between 1970 and 2005-2009. In 197076.4 percent of Cincinnati's African Americans lived in the two lower SES quartiles. In 2005-2009 the percentage was 58.2.
8. In the 2000s the two lowest SES quartiles in Cincinnati became less African American (Table 2b) and SES III more African American. SES IV lost over 4,000 African Americans and went from 13 percent to 10.6 percent on this indicator.
9. Cincinnati was poorer and included more African Americans in 2005-2009 than in 1970. During this period the poverty rate for families climbed from 12.8 percent to 20.1 per-

> Cincinnati was poorer and included more African Americans in 20052009 than in 1970. During this period the poverty rate for families climbed from 12.8 percent to 20.1 percent in the City of Cincinnati.
cent in the City of Cincinnati. The percentage of African American families increased from 27.6 to 41.0 (Table 2d). Racial isolation continues. Hamilton County is 24.2 African American. The percentage African American in the six other counties range from $.5 \%$ to 4.5% (Table 11f). Changes in these percentages in the seven counties were less than one percent in
the past decade.
10. Among blue-collar Appalachian areas Camp Washington, East End, Lower Price Hill, and Linwood saw improvement in SES during the 00s. East Price Hill continued a pattern of decline. Sedamsville-Riverside declined slightly. Carthage declined by over 10 points; Riverside-Sayler Park by 38.4 points.
11. Patterns in working class African American neighborhoods were also varied. Neighborhoods which gained more than 10 points on the SES Index in the 00s were Over-the-Rhine (24.6), North Fairmount-English Woods (19.4), West End (14.7), Winton Hills (11.6), and Mt. Auburn (8.5). Smaller increases occurred in Walnut Hills (1.3), Avondale (1.4) and Fay Apartments (1.4). Three neighborhoods saw declines on the SES Index. South Cummins-ville-Millvale lost 3.8 points. Evanston declined 1.4 points and Bond Hill 7.7.
12. The decline in the population over 60 which we reported in the Fourth Edition has reversed itself in three social areas of the city of Cincinnati (Table 2b).
13. Family structure has changed fundamentally and radically since 1970 in the two lower SES areas (Table 2c).

TABLE 12A			
FAMILY STRUCTURE INDICATOR IN CINCINNATI, 1970 то 2005-2009			
	1970	2000	2005-2009
SES I	71.4	17.0	22.9
SES II	73.5	34.7	32.5
SES III	80.3	50.3	48.9
SES IV	83.1	75.4	69.0

The Family Structure Indicator is the percent of children under 18 living in two parent families.

Data are for the City of Cincinnati.

The change in SES III is also dramatic. Less than half the children under 18 now live in two parent homes. The "traditional" family structure is holding up only in the highest SES area. Although we believe this is the most important finding of this forty-year study we are not quite sure of all its implications. We are certain that
it is not just associated with an increase in the African American population in these areas. It has affected some poor white areas and recently the FSI is declining given in SES III and IV. It appears that, at least in Cincinnati, there is a correlation between family structure and SES that was not as apparent forty years ago. We are certain that community organizers, social workers, school officials, health workers and others concerned about the inner city need to assess how practice and policy need to adapt to the new reality that the two parent family is rapidly disappearing.

The Seven County (1970) Metro Area*

14. In the 7 -county metropolitan area both African Americans and the poor are concentrated. Sixty-two percent of metropolitan area African Americans and 40.5 percent of metropolitan area poor live in Cincinnati (Table 11d). These percentages compare to, respectively, from 67 and 46.6 in 2000.

> Socioeconomic integration is also sorely lacking at the metropolitan area level. Most of the metropolitan area's poor families live in Hamilton County (Table 11e), primarily in SES I and II.
15. Socioeconomic integration is also sorely lacking at the metropolitan area level. Most of the metropolitan area's poor families live in Hamilton County (Table 11e), primarily in SES I and II.
16. Campbell and Kenton Counties' poverty rates of 7.5 and 8.7 are closest to Hamilton County's rate of 10.4 (Table 11e).

* In 1970, the metropolitan area included Hamilton, Warren and Clermont Counties in Ohio, Kenton, Campbell and Boone in Kentucky and Dearborn County in Indiana.

The New Metro Area and the 20-County Health Foundation Service Area

17. This Fifth Edition includes a narrative (Chapter 11, Sections II and III) on the 15county Cincinnati Metropolitan Area and the 20-county region served by the Health Foundation of Greater Cincinnati. Appendix VI provides the five socioeconomic status variables for the 15 -county area and Appendix VII provides the same data for the 20 -county area. Both tables are at the census tract level. These data provide rich material which planners, administrators and proposal writers can use for needs assessment and resource allocation. The base maps, Figures 14 and 15, can be used to plot epidemiological, crime, food availability, and other data to see how they vary by socioeconomic status.
18. The 7 -county (Figure 13), 15-county (Figure 14), and 20-county (Figure 15) maps allow us to see at a glance the socioeconomic picture of our region in its various configurations. The two lowest quartiles or social areas (SES I and II) should be given high priority for certain education, health, and social service programs. The two higher SES areas (SES III and IV) can also be used for targeting programs such as serving the dispersed poor or preventing neighborhood decline.
19. Future American Community Survey or equivalent census data can be used to measure change in the different census tracts and larger ju-
risdictions in our region using this study as baseline

The maps and charts provided in this report provide a new tool for regional needs data.
20. The maps and charts provided in this report provide a new tool for regional needs assessment. Figure 15, for example, could be used to review the location of food pantries, GED or job training programs, or emergency services. SES I and SES II areas would be high priority. Appendix VII provides more detail on education levels, family structure, me-
dian family income, occupation, and housing. In Adams County, for example, Tracts 9904 and 9906 are in SES I. These two tracts have a Family Structure Indicator of 48.3 and 54.9, respectively. This means that only approximately half of the children under 18 live in two parent homes. The Education Indicator is 25.4 and 26.0, respectively. Median Family Income is in the $\$ 35,000-\$ 40,000$ range. Programs to assist single parents might include ready access to GED programs, day care, and job training.

Public Policy Implications of the Continuing Urban Crisis

Numerous studies have examined the nature of our inner cities. They are often described as inhabited by an urban underclass which experiences a combination of poverty, social problems, unemployment, and dependence on public assistance. Explanations for this concentrated poverty vary, but most causes include: changing employment opportunities, declines in marriage rates, selective outmigration (movement of the middle-class from the urban core), and race discrimination in marginalizing low-skilled minorities in our society. ${ }^{1}$

A review of poverty research over the past four decades provides some indications of our priorities and needed directions. Robert Haverman identifies trends: 1) the nation has experienced growing inequality in earnings, with particular hardships on young workers and those with little education; 2) as a nation, our policies are directed more at symptoms and lacks investment in education policies and support of our youth, 3) most of the growth in social welfare spending has been in the form of social insurance benefits to elderly and disabled people, and in-kind benefits such as Medicare and Medicaid. 2

Rebecca Blank examined the past two decades of changes in welfare policies and found that changes focused more on increasing work effort of recipients and less on improving their earnings potential. She examined the effects of on-the-job training, job search assistance, and work experience programs on female Aid for Families with Dependent Children (AFDC)
recipients and found that although these programs lead to modest employment and income gains there was no evidence that these programs moved families out of poverty. ${ }^{3}$
Urban specialists agree that one single policy cannot be effective with the complicated problems of urban poverty. A framework of policies is recommended that recognizes psychological factors, social structure factors and cultural variables. The framework must include: employment access, appropriate education, and family support policies. Additionally the policies must address the relationship between cities and suburbs and both public and private sectors. Whatever framework of policies is developed, the outcomes wouldn't be immediate. Several years of these policies would be necessary to achieve notable results. One example of a framework of multiple policies in an urban area is the New Hope Program in Milwaukee, Wisconsin. This framework pro-

$$
\begin{aligned}
& \text { The framework must } \\
& \text { include: employment } \\
& \text { access, appropriate } \\
& \text { education, and family } \\
& \text { support policies. }
\end{aligned}
$$ vides the purchase of child care services, governmentally enforced child support, job training and job-finding services, a guaranteed income floor, and wage subsidies to able bodied adults and possible long-term public employment. Other examples of a comprehensive approach to neighborhood revitalization include the Dudley Street neighborhood project in Boston's Roxbury neighborhood ${ }^{4}$ and the Harlem Children's Zone. ${ }^{5}$ The former uses the comprehensive community development model and began with a community organization effort to insure citizen input. The Harlem project, led by a reformer named Geoffrey Canada, includes educational, social, and medical services. Both of these efforts are backed by a major local foundation.

I nner City Employment

Many Americans view the high rates of inner city unemployment as the most fundamental problem afflicting the urban poor. It is recognized as both a personal problem and source of social distress associated with crime, drug trafficking, and family break-ups. Employment is not simply a way to support one's family, but a structure for daily behavior and activities.
Employment policy recommendations abound, but all have a special caveat - they cannot stand alone. Policies of macroeconomic stimulation, human capital development, health care, and income support are necessary foundations. Specific recommended policies vary in details, but essentials include: family support policies, expanded transportation systems, job information centers and enforcing antidiscrimination laws, and guaranteed public works jobs. Other recommended policies include: a system of national performance standards in public schools; a school-to-work transition program; city-suburban integration and cooperation; and expanding housing vouchers.
The mismatch between residence in the inner city and the location of jobs in the suburbs is a major problem for many cities. Public transportation systems which link the metropolitan areas with the city are recommended as a fundamental component to solving unemployment problems (although not the only solution). Policies that achieve city-suburban cooperation are also proposed. Cooperation could range from creation of metropolitan governments to metropolitan tax-based sharing, collaborative metropolitan planning and regional authorities.

Lehman and Wilson advocate for job information and placement centers. These centers would provide awareness of the availability of employment opportunities in the metropolitan area and refer workers to employers. Just as importantly, they would provide training for individuals needing employment skills.

Mickey Kaus proposes a public works employment policy similar to the Works Progress Administration (W.P.A.) initiated by Roosevelt and in progress for eight years. This program would provide employment for every American
who wanted it. The jobs would be public construction work such as highway construction, housing and ground clean-up. Wages would be slightly below the minimum wage. Workers could be promoted to higher paying public work or move to the private sector as they increased their skills. Kaus proposes that all welfare recipients, after a certain time on welfare, must enroll in this work program or forfeit their welfare payments. (He also recognizes the necessity for government financed day care with this policy.) ${ }^{6}$
Jeffrey Lehman recommends urban policies that recognize the limited impact of legal regulations to alter discrimination in businesses and labor market opportunities. He recommends tools of public education and advertising to educate citizens about statistical discrimination, public transportation and job informa-

> Policies of macroeconomic stimulation, human capital development, health care, and income support are necessary foundations.
tion centers. Further, Lehman addresses residential segregation and argues that American housing markets are profoundly segregated on the basis of race and he relies on the spatial mismatch hypothesis to suggest policies. ${ }^{7}$
The spatial mismatch hypothesis suggests that inner city residents have fewer earnings opportunities than they would have if they lived in the suburbs and that this is a significant factor in explaining poverty among urban residents (Some urban researchers are unconvinced of this). While transportation and information centers may address some of the problems with employment, housing vouchers are recommended to address the employment problem of personal acquaintanceship isolation. Anthony Downs suggest policies or programs to respond to overt forms of residential segregation. Examples are to expand HUD enforcement staff and HUD-sponsored tester based activities. Lehman recommends policies that duplicate the experiment for Housing Allowance (EHAP)
and provide housing vouchers to inner city residents. He refers to the Gautreaux program in Chicago's public housing. It gave applicants a choice among three homes in either the city or the suburbs and found that those who left the city were 14 percent more likely to have a job.

> While transportation and
> information centers may address some of the problems with employment, housing vouchers are recommended to address the employment problem of personal acquaintanceship isolation.

Educational Policies

Since the 1970s the relative wages of both high school graduates and dropouts have steadily fallen. For male dropouts, 1991 wages were 26 percent lower than in 1973 and for female dropouts wages were 11 percent lower. High school graduates wages fell 21 percent and 6 percent for males and females, respectively. Also, the differential wage rates between college graduates and high school graduates have increased significantly. In 1991 the wage difference was 56 percent. Besides low wages, employment instability is a problem. Thirty two percent of high school graduates near thirty years of age had their job for less than one year and 49 percent of high school dropouts had their jobs less than one year in 1991. In 1999, among persons 25 to 34 years of age, 43 percent of high school graduates and only 29 percent of dropouts worked year-round full-time. In this age group the unemployment rate for dropouts was 44 percent compared to 23 percent for graduates.

In the sixties, national attention was drawn to persistent differences in academic achievement. Low-income areas produced disproportionate numbers of delinquents and school dropouts. The President and Congress responded with enactment of new educational support and provided federal funds to poor local school districts. Slowly changes were brought into schools and scores seemed to rise. However, several reports in the eighties revealed these
efforts were very unevenly distributed.
Henry M. Levin, a Stanford University educational economist, found that most of the reforms had relatively little to offer students with parents who have low incomes and little education. He identified that about 30 percent of the public school population was educationally disadvantaged. Levin feared that in the absence of explicit efforts to improve education for these youth some of the current reforms, such as stiffer graduation requirements, may actually increase dropout rates, contributing in turn to an increased permanent underclass. ${ }^{8}$

Terrel H. Bell, Secretary of Education in the 1980s, said, "The school reform movement has had no significant impact on the 30 percent of our students who are the low-income minority students. We are still not effectively educating them." ${ }^{9}$ And Ernest L. Boyer, president of the Carnegie Foundation for the Advancement of Teaching, said "Urban schools with students largely from minority groups were getting worse even as 'advantaged schools are getting better.' The first wave of educational reform, declared the Committee for Economic Development in its 1987 report, "has either ignored or underplayed the plight of the disadvantaged." 10

According to the America's Promise website (see Dropout Prevention) in 2011 only 53% of youth in America's 50 top cities graduate on time. In 200968% of 4 th graders scored below proficient on the NAEP reading test. In Hamilton County (2001-2009) 50.2\% of 4th graders

> From 2003 to 2009 the number of children in poverty increased from 32,751 to 42,305 . The poverty rate for children increased from 16.0\% to 21.4\%

were below proficiency in reading. From 2003 to 2009 the number of children in poverty increased from 32,751 to 42,305 . The poverty rate for children increased from 16.0% to $21.4 \%{ }^{11}$

A critical challenge for urban local schools is to ameliorate the disadvantages that children
from poor families face. Primary recommendations based on these reports include: expansion of preschool programs for disadvantaged children, integration of vocational skills with academic training, monitoring the quality of education provided to poor children and prepa-ration-for-work programs.

The 1960s saw the development of preschool and Head Start programs for children of poor families. The primary Head Start model included education, health, nutrition, social services and parent support to 3 to 5 year old children. Children were provided hot meals, social services, health evaluation and care, and their families became partners in their children's learning experiences. The long-term effects of these programs are well documented.

The Perry Preschool program is perhaps the most well-known preschool program with evaluation studies. Children who attended this quality program developed social and academic competencies later manifested in increased school success. For example, students had lower rates of high school dropouts, lower placement in special education classes, lower teenage pregnancy, unemployment and criminal involvement, enhanced college attendance and post-high school training programs.

The Perry Preschool and other successful preschools provide full-time, year round services by highly trained staff. Most Head Start programs, however, do not provide such interventions. They provide three to four hours of services for a typical school year and often with minimally trained staff. The National Head Start association in 1989 provided five recommendations to increase the quality of these programs. First, increased staff training, better compensation and upgraded facilities are needed. Second, increase the program day to five or six hours as these are the hours of programs that had successful outcomes mentioned above. Third, combine the program day with child care hours -- typically ten hours a day so family members can work. Fourth, include two generation approaches by helping parents to develop the skills to help their children. Fifth, make program available to more of the eligible
children not currently being served.
Research suggests that mastery of reading and math skills taught no later than junior high school is increasingly significant in determining access to high paying jobs for high school graduates. This is important as many school districts have found it easier to offer excellent instruction in advanced material to a subset of motivated students preparing for colleges than to help all students acquire threshold levels of literacy and mathematical problem solving skills. Murnane is afraid state testing programs influence what is emphasized in the classroom and policies designed to improve cognitive and testing ability rather than practical skills are emphasized.

Many industrialized countries have policies that require their young people to meet high performance standards before they can graduate from high schools. National standards are set and high schools are held responsible for meeting these standards. These standards prepare young people for either immediate employment or training in technical areas. Currently the United States has no mandatory standards and high school graduates that are not preparing for college have severely limited options after high school.

Murnane recommends three principles for high

> These principles require different institutions - high schools, colleges and private industries - to coordinate their efforts for successful outcomes.

schools in preparing their graduates for the workforce. First, integrate vocational training with instruction in traditional academic subjects such as language arts and mathematics. This is based on a study that showed that many students learn academic material most successfully when it is taught in the context of preparation for real jobs. Second, learning should be integrated with experience in real workplaces. This aids in helping students understand the importance of regular attendance and punctu-
ality that employers demand. The third principle is that high school education should be integrated with postsecondary education. These principles require different institutions - high schools, colleges, and private industries - to coordinate their efforts for successful outcomes. ${ }^{12}$

The federal government has tried to support these efforts through the 1990 Perkins Act, which mandates that vocational education programs integrate academic and occupational training. One example of this is the career academy. Each academy has a particular theme and curricula are designed to blend academics and vocational material to capture students' interests. Local employers provide mentoring for students and internships in the academy's industrial field.

Another model receiving funding from the Perkins Act is the Tech Prep or Two plus Two programs. These programs coordinate the curriculum of the last two years of high school and two years of community college related to one particular occupation. Youth apprenticeships programs provide work-based mentoring and academic instruction. Long-term evaluations regarding the employment and wages of participants of these programs have not been done.

Wilson recommends a four prong policy framework that involves the educational system and family support policies. The first important step in this area is targeting schools in disadvantaged neighborhoods with local and national performance standards. Second, state and local governments would have to support these efforts by creating equity in local funding that attracts high quality teachers, curriculum development and assessment and teaching development and material resources, especially computers. ${ }^{13}$

Third, the private sector should be encouraged to work with these schools to improve computer competency training. Federal support started in 1994 and 1995 when schools could apply for a grant to develop clear and high standards regarding instruction, curriculum technology, professional development and parental and community involvement. State governments are expected to create more equity in local school funding by supporting these programs as well as attracting high quality teachers and comput-
ers for the classrooms.
Fourth, Wilson advocates that data on school performance be compared to the national performance standards and be widely disseminated. He advocates for a voucher system for the selection of public schools that parents should be able to select for their child's attendance. He bases this recommendation on empirical data that suggests that increased competition among public schools improves average student performance and restrains levels of spending. ${ }^{14}$

The K-12 reform program advocated by the George Lucas Foundation (2011) includes comprehensive assessment, integrated studies, project-based learning, social and emotional learning, teacher development and technology integration. The ENA's Priority Schools Program emphasizes partnerships between schools, business and community organizations. ${ }^{15}$

Family Support Policies

Education policies have been looked at primarily as a solution to urban unemployment and low skill levels of labor force entrants. However, we cannot rely only on improvements in the educational system. The quality of the lives children lead outside the school are critical. Family life factors have often been found as a stronger predictor of cognitive skill levels than are school variables.

Children who live in single parent families are often exposed to high levels of economic and social insecurity. About half of these children live in families with below poverty incomes. On average the post-divorce income of a single mother is about 60 percent of her pre-divorce income. With this loss in income, changes in employment happen often, either through new jobs or expanded hours. One study found that mothers who worked one thousand hours or more increased from 51 percent to 73 percent after a divorce. Clearly these children are exposed to risks of more than economic insecurity.

Garfinkel and McLanahan recommend ways the government can reduce the economic insecurity of these families through examples from other industrialized countries and empirical studies. Providing benefits to all single mothers, regard-
less of income, reduces heavy dependence on public assistance, but increases the prevalence of single parenthood only slightly. Further recommendations include providing benefits to both one and two parent families. ${ }^{16}$ Admittedly this requires a greater commitment of public funds than Americans have been willing to provide.

Family support, as witnessed in other industrialized countries, is recommended by nearly all urban specialists. The French system includes three programs -- child care, income support

> Family support, as witnessed in other industrialized countries, is recommended by nearly all urban specialists.
and medical care. The child care programs include infant care and high quality pre-schools that prepare children for kindergarten. The income support program includes child-support enforcement from the absent parent, child allowances and welfare payments for low-income parents.

The Status of Children

A report by the Annie E. Casey Foundation ${ }^{17}$ and the Population Reference Bureau ${ }^{18}$ focuses attention on the growing number of children in severely distressed neighborhoods. The criteria for "severely distressed" fit several if not most of the neighborhoods in SES I in this study. On a national basis, 28% of black children and 13% of Hispanic children live in such neighborhoods while only 1 percent of non-Hispanic whites live in these areas. In Cincinnati, Covington, and Newport, because of the low income Appalachian population, the percentage of white children in distressed areas is likely to be higher. The Cincinnati-Middletown, OH-KY-IN CMSA has 33,339 children living in severely distressed neighborhoods. This is 6.3% of all children, a rate somewhere in the middle of the 100 cities surveyed.

The implications of this concentration of children is described as follows:

The increase of children living in severely dis-
tressed communities during the 1990s is a cause for concern because neighborhoods influence many outcomes for children. The high concentration of black and Hispanic children in disadvantaged neighborhoods indicate that a significant segment of our most vulnerable children are not likely to get the kind of support they need to thrive ${ }^{19}$ (www.aecf.org)

Those supports include the two parent family and the elderly (grandparents and other elders) which, as we have noted in this report, are becoming scarce in inner city neighborhoods.

The importance of public education and other facets of child welfare to community health is illustrated by the listserv publication following from the Child Welfare Policy Research Center (May 20, 2004):

Census counts from 1990 and 2000 provide ample evidence that Hamilton County is a county in distress. The county not only lost population for the third consecutive decade, but its 1990-2000 loss of 20,925 people was the largest among all of Ohio's 88 counties. Annual estimates issued by the U.S. Census Bureau indicate that Hamilton County's population decline has accelerated even further since 2000. According to the latest estimates, Hamilton County's population fell by 21,831 from April 1, 2000 to July 1, 2003. In only $31 / 4$ years, the county experienced a loss surpassing that of the entire preceding decade, when Hamilton County was Ohio's population loss leader.

Tabulations from the 1990 or 2000 census don't

> The Cincinnati-Middletown, OHKY-IN CMSA has 33,339 children living in severely distressed neighborhoods. This is 6.3% of all children, a rate somewhere in the middle of the 100 cities surveyed.
include specific information on the composition of population change between natural increase (the balance of births over deaths) and net migration (the balance of people moving into and out of an area). But simple cohort analysis,
tracking a group of people across the two census years, can provide some valuable insights into the size of the net migration component.
Hamilton County was home to 67,593 children ages 0 to 4 in 1990, but 10 years later there were 3,771 fewer children who were 10 years older, in the 10-14 age group. Aside from the first year of life, the risk of mortality is very low for children at these ages, so the only conclusion is that out-migration of families with young children is responsible for the decline. Presumably dissatisfied with conditions in Hamilton County, many of these families chose to leave. The same cohort analysis reveals that the seven tri-state suburban counties collectively gained nearly 11,000 children in this age cohort between 1990 and 2000 .

> In $2011,18 \%$ of U.S. children were living in poverty. In 2009, the percentages for Hamilton County and Butler County were 21.4 and 17.5 respectively (up from 13% and 12% respectively in 2005).

Population gain and loss within this cohort of children is even more dramatic at the neighborhood level. Sixty-eight of 217 census tracts experienced a staggering loss of 25% of more in the cohort of children who were preschool-aged in 1990. Almost all of these tracts are served by Cincinnati Public Schools, perhaps reflecting a strong consumer preference for suburban school districts. ${ }^{20}$

The Child Policy Research Center serves as a community resource for evidence-based, policy relevant information on the well-being of children in the 29-county region in southern Ohio, northern Kentucky and eastern Indiana.

In 2011, 18\% of U.S. children were living in poverty. In 2009, the percentages for Hamilton County and Butler County were 21.4 and 17.5 respectively (up from 13% and 12% respectively in 2005).

Health Status

The Ohio Family Health Status Survey found that there are significant disparities between Ohio's central cities and suburbs on the three key variables (overall health, physical health, and mental health) among adults. The citysuburban differences on these variables for the elderly were not statistically significant. Most of the difference between cities and suburbs can be explained by differences in socioeconomic status and demographics. ${ }^{21}$ The socioeconomic status index used was similar to the one used in this study except that poverty was substituted for the housing variable.

SES was less important as a predictor of physical health than of self-reported health and mental health. Racial composition of a neighborhood is a marginally significant factor in predicting physical health. Age is the most important factor in predicting physical health and mental health but is less important in determining mental health. "After age, poverty and income level are the most important predictors on all three health status measures." ${ }^{22}$

Several important local studies have been completed in the past several years on the health status of individuals and various sub groups of the population including children, African Americans, and Appalachians. For information consult the web sites of the Institute for Health Policy and Health Services Research, the Health Foundation of Greater Cincinnati (www.healthfoundation.org), the Child Policy Research Center (www.cprc_chmc.uc.edu) and the Urban Appalachian Council (www. uacvoice.org). Local health research is available on these sites. See Chapter 10 for a more extensive treatment of socioeconomic status and health.

Deconcentrating the Poor

The concentration of the poor and minorities in the central city of the region ought to be a matter of great concern to policy makers. Since 1992, the Department of Housing and Urban Development has used the HOPE VI Program, vouchers, and other strategies to replace public housing concentrations with dispersed affordable units. In a recent Journal of the American

Planning Association article ${ }^{12}$ Edward G. Goetz assesses the results of efforts brought about by desegregation lawsuits. The bibliography makes reference to a variety of recent efforts, the most famous of which took place in Chicago, Minneapolis and Columbus, Ohio. The Minneapolis experience is examined in detail.
Goetz points out the limited success of these programs. Dispersal was mostly to nearby neighborhoods already heavily impacted. There was little dispersal to suburbia in most cases. The reasons include resistance of suburban communities to affordable housing, especially for nonresidents, affordability, transportation issues, and the reluctance of public housing residents to leave supportive networks and services in the city. The effects of restrictive zoning were not examined. The Chicago experience shows that when public housing conditions are bad enough there is more demand in favor of relocation on the part of residents of public housing. Supportive services must be provided to relocating families over an extended period of time.

A broader design for deconcentrating poverty from the central cities and the creation of low and moderate income housing in suburbia should go beyond lawsuits and public housing project demolition. A regional effort involving foundations, corporations, and private developers as well as governments needs to be developed. A regional non-profit developer could play a role. The benefits to cooperating suburban communities need to be great enough to help overcome resistance.
Current Antipoverty Thinking - The Annie E. Casey Foundation (2009) in its Kid's Count Indicator Brief (www.aecf.org) recommends five strategies for lifting children and families out of poverty:

- Build political will to reduce child poverty.
- Make work pay
- Help low-income families keep more of what they earn.
- Strengthen the safety net.
- Help low-income families build up savings and assets.

Poverty experts have learned that work is not enough. Working a part-time job with no benefits or working only part of a year will not lift one's family out of poverty. And, even if it does, the commonly used poverty levels represent only about $1 / 3$ of what it would cost to live at an adequate level. Society needs to find a way to increase the minimum wage and to provide jobs with a living wage and

> Poverty experts have learned that work is not enough. benefits.

Building the political will to eliminate or seriously reduce poverty will require reframing the issue. Most Americans believe people in poverty are there because of some moral failure. The Inclusion Network of the Center for Economic Policy Research (www. Inclusionist. org) suggests an economic framework in which the problem is not poverty but our dependence on low wage jobs. Many of these low wage jobs are also part time and have limited or no benefits. Under these circumstances people are unable to "work their way out of poverty" in the way that welfare reform policies assumed.

Rural and Small Town Areas

Most of the discussion in this chapter has focused on inner city poverty. Needs in suburban and exurban areas are sometimes similar but required solutions may be different. The availability of transportation to distant jobs is an example. Mass transit might be appropriate in the city but carpooling or employer-provided vans might be more appropriate for exurbia. Cultural differences may also affect solutions. The availability of strong kinship networks is one such cultural factor. Where they exist, services should be supportive, not try to replace them. In both urban and exurban communities, a "survey" of community assets is appropriate. We need to know, for example, how people are currently getting to work or to the health clinic before developing a new service. It might make more sense to subsidize existing providers than to expand public transit. Rural needs are changing. Changes in kinship networks mean more single parents and more isolated rural elderly in some counties. The data
provided in Chapter 11 provides an additional tool for rural needs assessment.

The Need for Regional Approaches

For over a decade, urbanologists such as David Rusk and Myron Orfield have examined cities and their regions while advocating regional approaches for managing the trends that are shaping these metro areas. While deploring trends such as central city population loss, the geographic concentration of poverty, and suburban sprawl, these researchers also point to existing reforms such as regional tax sharing and policies that encourage the dispersal of affordable housing units throughout urban regions. In 2001, Myron Orfield completed a

Up to now, Greater Cincinnati and most U.S. urban regions have made no more than token gestures toward applying regional approaches to their long term problems.
report that includes both an analysis of the Cincinnati region and a series of regional policy recommendations (Cincinnati Metropatterns, Citizens for Civic Renewal).
Up to now, Greater Cincinnati and most U.S. urban regions have made no more than token gestures toward applying regional approaches to their long term problems. Recent events in the Cincinnati area, however, reveal some evidence that regionalism is germinating in the grassroots. What has caused this change in attitude?

First of all, problems that used to be associated with central city decline have taken root in the suburbs. Many of the older incorporated suburbs (often referred to as the "first ring suburbs") have suffered dramatic economic and social decline that place them at greater fiscal risk than Cincinnati. Meanwhile, the relatively unplanned growth of the outer suburbs creates escalating infrastructure cost, traffic gridlock, and air and lead pollution.

In reacting to these trends, citizens, civic 138
groups, and certain public officials have taken steps to promote several regional responses. Citizens for Civic Renewal, a regional citizens' organization that was formed in the late 1990s, sponsored Myron Orfield's study. It currently builds supports for a regional tax sharing policy, an improved area-wide mass transit system and citizen involvement in priority setting.

The Smart Growth Coalition represents another initiative of citizens from Greater Cincinnati and Northern Kentucky. The Coalition formed for the purpose of advocating alternatives to sprawling, unplanned growth. It published a report in 2001 that emphasized preserving green space and farmland, redeveloping brownfields, revitalizing urban neighborhoods, and promoting mass transit. Other regional cooperation efforts include Agenda 360 and Vision 2015. Through its funding and research, the Health Foundation of Greater Cincinnati serves a broad 20-County region (Figure 15). United Way provides a regional structure for human services funding as well as for cooperation on broad planning and service initiatives. The Free Store Food Bank serves a 20-county region to coordinate food distribution.
In terms of dealing with affordable housing issues on a regional basis, officials from Hamilton County, the City of Cincinnati, and the Metropolitan Housing Authority met with other interested parties from 2003-2004 with the purpose of coming up with some common housing goals. This group, "The Housing Advisory Committee," issued its report with a series of recommendations that link housing strategies with the deconcentration of poverty.

These and other initiatives do show some movement toward grappling with issues on a regional basis. Plenty of inertia, however, still exists that prevents regional cooperation. Nevertheless, more and more citizens are recognizing that urban regions have become our geographic, social, and economic realities, and that such realities require public responses that are regional in scope.

Conclusion

Many progressive policies and programs have been discussed here. Whatever path Cincinnati area leaders take we emphasize the importance of using a multi-dimensional framework. Cincinnati and the region have neighborhoods with various social, economic, and educational needs and a solitary program could not create lasting changes. Programs that support each other and the many demands on families are needed. As stated by Alex Kotlowitz in There Are No Children

Programs that support each other and the
 many demands on families are needed.

 Here:Many interventions may fail because we change only one thing at a time. We provide school counseling for children who are acting out, but do little to change the social and family environments that shape these children's behavior. We offer welfare recipients job training, but do nothing to increase demand for the skills they are acquiring or to assure that completion of training and successful employment will bring added income. In short, some interventions show up as ineffective because we have changed only one factor when we need to change many to succeed. ${ }^{23}$

References for Chapter 1

1. Shevky, Eshref, and Marilyn Williams, The Social Areas of Los Angeles, University of California Press, Berkeley, 1949.
2. ibid, preface
3. Bell, Wendell, "Social Areas: Typology of Urban Neighborhoods", in Sussman, Marvin, B., ed., Community Structure and Analysis, Thomas Y. Corwell, New York, 1959.
4. Shevky and Williams, op. cit., and Tryon, Robert C., Identification of Social Areas by Cluster Analysis (Berkeley and Los Angeles: University of California Press, 1955).
5. Greer, Kaufman and Van Arsdel, et al., "An Investigation into the Generality of the Shevky Social Area Indexes", American Sociological Review, Vol. 23 (June, 1958), pp. 277-284; and Green, Kaufman and Van Arsdel, et al., "A Deviant Case of Shevky's Dimensions of Urban Structure", Proceedings of the Pacific Sociological Society in Research Studies in the State College of Washington, Vol. 25 (June, 1957).
6. The "New Haven" Methodology was adopted by Moroney, Maloney, and May in 1972 from Health Information System II, Volume 12 of the Census Use Series published by the U.S. Department of Commerce for the 1970 census.
7. Hill, Robert B., "The Illusion of Black Progress". Social Policy, November/December, 1978, pp. 14-25.

References for Chapter 2

1. Maloney, Michael E., The Social Areas of Cincinnati, 1970, Cincinnati Human Relations Commission, January, 1974.
2. Non-agricultural Wage and Salary Employment in Cincinnati Metropolitan Area, Ohio Bureau of Employment Services, Labor Market Information Division 2928 8/228, 1984.
3. Maloney, Michael E., The Social Areas of Cincinnati, 1970, Cincinnati Human Relations Commission, January, 1974.

References for Chapter 3

1. Wallace, 1967.
2. Moroney, Robert; Maloney, Michael; and May, Leslie; "Social Planning Uses of Urban Planning Information Systems", Department of City and Regional Planning, University of North Carolina, Chapel Hill, September, 1972.

References for Chapter 5

1. Obermiller, Phillip J. and Michael Maloney, "The Current and Future Prospects of Urban Appalachians" in Borman, Kathryn, and Phillip J. Obermiller, From Mountain to Metropolis, Bergen and Earvey 1994.
2. Maloney, Michael E., The Social Areas of Cincinnati, 1980, Cincinnati Human Relations Commission, January, 1986.

References for Chapter 6

1. Michael Maloney (Urban Applachian Council Working Paper Number 15, April 25, 1985)
2. The Cincinnati Enquirer reported in January 1996.
3. Hoeweler, Fred, unpublished data, 1995.

References for Chapter 7

1. The Council on Aging has sponsored research on some subgroups. See also David Varaday's paper on the Appalachian Elderly, an Urban Appalachian Council Working Paper.
2. The Cincinnati Post, February 19, 1997.

References for Chapter 10

1. Markus HR, Plaut VC, Lackan NA. Well-being in America: Core features and regional patterns. In: Brim OG, Ryff CD, Kessler RC, eds. How Healthy are We? Chicago, IL: The University of Chicago Press; 2004:614-650.
2. Evans RG, Stoddart GL. Producing health, consuming health care. In: Evans RG, Barer ML, Marmor TR, eds. Why are some People Healthy and Not Others: The Determinants of Health of Populations. New York, NY: Aldine de Gruyter; 1994:27-64.
3. Diez Roux AV, Mair C. Neighborhoods and health. Ann. N.Y. Acad. Sci. 2010; 1186:125145.
4. Diez Roux AV. Complex systems thinking and current impasses in health disparities research. Am J Public Health. 2011;101:16271634.
5. Messer LC, Laraia BA, Kaufman JS, Eyster J, Holzman C, Culhane J, Elo I, Burke JG, O'Campo P. The development of a standardized neighborhood deprivation index. J Urban Health 2006;83(6):1041-62.
6. Cubbin C, Pedregon V, Egerter S, Braveman P. Where We Live Matters for Our Health: Neighborhoods and Health. Issue Brief 3: Neighborhoods and Health. Princeton, NJ: Robert Wood Johnson Foundation Commission to Build a Healthier America; 2008.
7. Public Health Agency of Canada. What Determines Health? Available at: http://www. phac-aspc.gc.ca/ph-sp/determinants/indexeng.php. Accessed December 1, 2011.
8. Center for Closing the Health Gap in Greater Cincinnati. City of Cincinnati Data Project, July 2007-June 208. Available at: http:// www.closingthehealthgap.org/Docs/City\ Data\%20 Report\%20Executive\%20Summary. pdf. Accessed December 1, 2011.
9. Health Foundation of Greater Cincinnati. Greater Cincinnati Community Health Status Survey. Available at: https://www.healthfoundation.org/data_publications/gcchss. html. Accessed December 1, 2011.
10. City of Cincinnati Health Department. Cincinnati Neighborhood-Specific Mortality Data. Available at: http://www.cincinnati-oh.gov/ health/pages/-41728-/. Accessed December 1, 2011.
11. McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci. 1998;840:33-44.
12. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010;35(1):2-16.
13. Evans GW. A multimethodological analysis of cumulative risk and allostatic load among rural children. Dev Psychol. 2003;39(5):924-33.
14. Couto RA. Foreward. In Ludke RL, Obermiller PJ (eds.). Appalachian Health and Well-Being. Lexington, KY: University Press of Kentucky,
15.
16. Brown MK. Community-Based Participatory Health Research in an Urban Appalachian Neighborhood. In Ludke RL, Obermiller PJ (eds.). Appalachian Health and Well-Being. Lexington, KY: University Press of Kentucky, 2012.
17. Center for Closing the Health Gap in Greater Cincinnati. Do Right! Campaign. Available at: http://www.closingthehealthgap.org/ DoRight/index.html. Accessed December 1, 2011.
18. Kawachi I, Berkman LF. Neighborhoods and Health. New York, NY: Oxford University Press, 2003.

References for Chapter 11

1. Rusk, David in Gilligan, John J., and William K. Woods, eds. The Challenge of Regionalism: A Civic Forum Report, University of Cincinnati College of Law, Fall, 1996, p. 9.
2. Rusk, ibid, p. 6-7.

References for Chapter 12

1. Wilson, William Julius (1996), When Work Disappears: The World of the New Urban Poor. Alfred A. Knopf, Inc. New York.
2. Haverman, Robert (1994), The Nature, Causes, and Cures of Poverty: Accomplishments from Three Decades of Poverty Research and Policy. In S.H. Danziger, G.D. Sandefur, and D.H. Weinberg (Eds), Confronting Poverty: Prescriptions for Change, Harvard University Press, Cambridge, Massachusetts.
3. Blank, Rebecca (1994). The Employment Strategy: Public Policies to Increase Work and Earnings. In S.H. Danziger, G.D. Sandefur, and D.H. Weinberg (Eds), Confronting Poverty: Prescriptions for Change. Harvard University Press, Cambridge, Massachusetts.
4. Medoff, Peter and Holly Sklar (1994). Streets of Hope: The Fall and Rise of an Urban Neighborhood, South End Press, Boston, Massachusetts.
5. Tough, Paul. "The Harlem Project", New York Times Magazine, June 20, 2004, pp. 44-47.
6. Kaus,Mickey. 1995. The End of Equality, New York: Basic Books.
7. Lehman, 1994.
8. Levin, HM. 1989. Economics of Investment in Educationally Disadvantaged Students. American Economic Review, 79(2): 52-56.
9. Bell, Terrel H. 1988. The Federal Impact. New Directions for Community Colleges, 84: 9-13.
10. Boyer, Ernest L. 1988. School Reform: Completing the Course. NASSP Bulletin, 72(504): 61-68.
11. www.kidscount.org/data/bystate/
12. Murnane, Richard (1994), Education and the Well-Being of the Next Generation. In S.H. Danziger, G.D., Sandefur, and D.H. Weinberg (Eds), Confronting Poverty: Prescriptions for Change. Harvard University Press, Cambridge, Massachusetts.
13. Wilson, 1996.
14. Wilson, 1996.
15. Wilson, 1996.
16. Garfinkel, Irwin and Sara McLanahan (1994). Single-Mother Families, Economic Insecurity, and Government Policy. In S.H. Danziger, G.D. Sandefur, and D. H. Weinberg (Eds), Confronting Poverty: Prescriptions for Change. Harvard University Press, Cambridge, Massachusetts.
17. Shore, Rima and Barbara Shore, Kids Count Indicator Briefs, Annie E. Casey Foundation, July 2009, p.1.
18. Hare and Mather, 2003.
19. Annie E. Casey Foundation, www.aecf.org, p. ii.
20. Child Welfare Policy Research Center, May 20, 2004.
21. Coulton, Claudia, Natalie Colabianchi and Thomas Cook, An Analysis of Differences in Health Status Measures Among Neighborhoods within Metro Counties of Ohio - a supplemental analysis to the Ohio Inner City Health Profile, Center on Urban Poverty and Social Change, Mandel School of Applied Social Sciences, Case Western Reserve University, June 29,2001, p.1.
22. Coulton, et al., p.9.
23. Kotlowitz, Alex (1991), There Are No Children Here, Nan A. Talese, New York.
Appendix II
SES INDEX AND VARIABLES FOR THE CINCINNATI CITY CENSUS TRACTS, 2005-2009

SES Index		Neighborhood	Tract Number	Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index				Rank	Index	Rank	Index	Rank	Index	Rank	Index	Rank
1	11.60	S. Cumminsville - Millvale	77	\$15,732	11	4.0\%	22	8.3\%	16	96.7\%	1	41.8\%	8
2	13.80	West End	2	\$28,654	29	8.2\%	6	2.6\%	12	94.5\%	2	34.1\%	20
3	16.40	Fay Apartments	85.02	\$7,459	3	7.5\%	8	0.0\%	1	70.2\%	49	33.2\%	21
4	19.00	Walnut Hills	35	\$16,203	13	0.0\%	68	0.0\%	1	93.9\%	3	39.7\%	10
5	21.60	Walnut Hills	36	\$22,125	15	3.4\%	26	34.7\%	53	90.8\%	5	41.1\%	9
6	21.80	East Price Hill	94	\$22,788	17	16.9\%	1	24.4\%	35	77.8\%	29	31.0\%	27
7	22.20	Walnut Hills	21	\$44,583	64	10.9\%	2	0.0\%	1	81.0\%	19	31.1\%	25
8	23.00	Avondale	67	\$15,938	12	7.0\%	10	19.4\%	27	88.1\%	8	17.7\%	58
9	23.20	West End	3.01	\$12,981	8	3.0\%	27	0.0\%	1	63.6\%	68	38.6\%	12
10	24.40	West Price Hill	98	\$26,378	24	7.5\%	9	41.1\%	61	90.1\%	6	32.5\%	22
11	24.60	Westwood	88	\$28,964	30	6.3\%	11	31.5\%	49	89.3\%	7	31.1\%	26
12	25.00	East Price Hill	92	\$30,333	31	9.7\%	4	48.2\%	71	85.2\%	12	42.1\%	7
13	25.80	Mt. Airy	85.01	\$26,514	25	5.9\%	14	13.1\%	18	76.8\%	33	24.4\%	39
14	26.60	West End	15	\$14,327	9	0.0\%	68	0.0\%	1	78.5\%	26	29.8\%	29
15	26.80	East Price Hill	95	\$31,731	33	5.7\%	16	36.6\%	55	84.8\%	13	34.8\%	17
16	27.20	Over-the-Rhine	16	\$8,725	4	7.8\%	7	53.8\%	78	73.3\%	42	45.8\%	5
17	28.00	Avondale	34	\$7,243	1	0.0\%	68	0.0\%	1	70.0\%	51	34.3\%	19
17	28.00	S. Fairmount	87	\$41,161	57	9.9\%	3	49.5\%	72	92.1\%	4	47.5\%	4
19	28.40	Avondale	68	\$24,092	19	0.0\%	68	15.8\%	22	85.9\%	10	32.4\%	23
20	29.00	Walnut Hills	37	\$14,904	10	1.4\%	48	6.8\%	15	68.1\%	56	35.6\%	16
20	29.00	Winton Hills	80	\$10,135	6	0.0\%	68	4.3\%	13	75.3\%	34	31.7\%	24
22	30.40	Over-the-Rhine	9	\$28,077	28	0.0\%	68	0.0\%	1	73.5\%	41	37.7\%	14
23	31.20	Camp Washington	28	\$32,733	36	4.3\%	19	54.2\%	80	84.2\%	15	44.4\%	6
24	31.40	Over-the-Rhine	17	\$7,434	2	0.0\%	68	0.0\%	1	61.1\%	73	37.8\%	13
25	32.00	Riverside - Sayler Park	104	\$33,625	39	2.9\%	29	15.8\%	23	78.3\%	27	22.7\%	42
26	33.00	Sedamsville - Riverside	103	\$26,250	23	0.0\%	68	37.1\%	56	83.4\%	16	49.9\%	2
27	34.00	Evanston	39	\$35,500	43	2.9\%	30	20.0\%	28	81.5\%	18	19.8\%	51

SES Index		Neighborhood	Tract Number	Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index				Rank	Index	Rank	Index	Rank	Index	Rank	Index	Rank
28	34.80	N. Fairmount - English Woods	86.01	\$31,176	32	0.0\%	68	28.8\%	42	80.3\%	21	39.4\%	11
29	35.20	East Price Hill	93	\$35,889	45	5.7\%	15	33.3\%	50	77.3\%	31	25.6\%	35
30	36.00	West Price Hill	97	\$31,996	34	1.3\%	52	21.2\%	31	79.6\%	23	23.8\%	40
31	36.20	East Price Hill	96	\$38,607	50	2.7\%	34	16.2\%	24	68.1\%	55	34.5\%	18
32	37.20	Roselawn	110	\$41,090	56	4.4\%	18	49.6\%	73	86.1\%	9	29.7\%	30
33	37.80	Avondale	66	\$28,071	27	2.7\%	33	13.9\%	20	62.3\%	72	24.6\%	37
33	37.80	Evanston	38	\$27,973	26	0.0\%	68	27.1\%	40	79.4\%	24	27.1\%	31
35	38.00	Bond Hill	63	\$32,654	35	0.0\%	68	20.8\%	29	84.6\%	14	21.8\%	44
36	38.60	West End	3.02	\$12,089	7	0.0\%	68	8.9\%	17	56.6\%	86	37.0\%	15
37	41.00	Bond Hill	64	\$33,050	38	1.9\%	43	31.0\%	47	77.5\%	30	20.9\%	47
37	41.00	Linwood	47.02	\$42,031	59	2.4\%	40	46.7\%	70	75.2\%	35	56.9\%	1
39	41.80	Mt. Auburn	23	\$38,359	49	3.7\%	24	13.8\%	19	51.7\%	89	30.3\%	28
39	41.80	Winton Place	73	\$42,173	60	2.0\%	42	22.1\%	33	78.0\%	28	21.3\%	46
41	42.00	Westwood	100.2	\$34,684	41	0.8\%	58	24.7\%	37	83.2\%	17	17.7\%	57
42	42.20	Carthage	61	\$39,798	52	4.3\%	20	45.6\%	66	77.1\%	32	22.8\%	41
43	43.60	S. Fairmount	89	\$23,750	18	0.0\%	68	29.6\%	45	85.6\%	11	14.6\%	76
44	44.80	Avondale	69	\$47,837	69	1.4\%	50	29.5\%	44	79.2\%	25	24.6\%	36
44	44.80	Northside	74	\$38,882	51	2.2\%	41	4.9\%	14	75.2\%	36	10.7\%	82
46	45.00	Lower Price Hill	91	\$22,784	16	0.0\%	68	41.9\%	63	60.2\%	75	47.8\%	3
47	46.20	Mt. Auburn	22	\$36,500	46	1.1\%	53	29.7\%	46	68.8\%	53	26.1\%	33
48	48.00	West End	8	\$34,167	40	0.0\%	68	0.0\%	1	54.0\%	88	22.5\%	43
49	48.60	Corryville	33	\$25,868	22	0.0\%	68	25.8\%	38	73.3\%	43	15.2\%	72
49	48.60	Fairview - Clifton	26	\$18,627	14	0.0\%	68	16.9\%	25	71.7\%	46	8.4\%	90
51	51.00	Roselawn	62.01	\$41,373	58	1.8\%	44	40.4\%	60	72.3\%	45	20.9\%	48
52	51.20	Madisonville	108	\$46,583	67	0.0\%	68	0.0\%	1	67.0\%	59	16.8\%	61
53	51.60	West Price Hill	99.02	\$40,288	53	1.7\%	46	31.4\%	48	74.5\%	37	15.0\%	74
53	51.60	Westwood	100.1	\$45,909	66	2.6\%	37	45.6\%	65	74.4\%	38	19.2\%	52
55	51.80	East End	44	\$36,944	48	0.6\%	65	33.7\%	51	66.3\%	63	27.0\%	32

SES INDEX AND VARIABLES FOR THE CINCINNATI CITY CENSUS TRACTS, 2005-2009

 $\underset{\sim}{\wedge} \underset{\sim}{\sim}$

SES Index		Neighborhood	Tract Number	Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index				Rank	Index	Rank	Index	Rank	Index	Rank	Index	Rank
84	74.80	Madisonville	56	\$63,561	91	0.0\%	68	76.5\%	98	66.4\%	62	17.8\%	55
85	75.00	N. Avondale - Paddock Hills	65	\$59,500	86	0.9\%	55	52.2\%	75	57.4\%	81	14.0\%	78
86	75.40	College Hill	111	\$63,542	90	3.0\%	28	67.7\%	93	64.5\%	67	5.1\%	99
87	75.80	Mt. Washington	46.01	\$64,702	93	0.4\%	67	39.5\%	59	49.6\%	92	15.6\%	68
87	75.80	Pleasant Ridge	57.02	\$57,256	81	0.0\%	68	41.2\%	62	57.7\%	80	8.9\%	88
89	77.20	Westwood	102.2	\$71,638	95	0.0\%	68	78.8\%	100	63.4\%	69	17.9\%	54
90	78.20	Mt. Auburn	18	\$55,795	78	2.7\%	36	78.9\%	101	55.0\%	87	8.5\%	89
91	80.00	Clifton	70	\$72,804	96	2.4\%	39	58.4\%	83	58.0\%	79	4.4\%	103
92	80.40	CBD - Riverfront	6	\$48,000	70	6.2\%	12	77.4\%	99	29.3\%	112	2.8\%	109
92	80.40	Westwood	101	\$63,491	89	0.8\%	59	64.3\%	90	59.2\%	77	8.9\%	87
94	81.20	East Walnut Hills	20	\$83,393	100	2.7\%	35	53.8\%	79	49.7\%	91	4.9\%	101
95	82.80	Pleasant Ridge	57.01	\$57,917	83	0.0\%	68	52.7\%	76	50.3\%	90	6.2\%	97
96	83.00	West Price Hill	107	\$75,610	98	0.0\%	68	100.0\%	113	69.2\%	52	10.4\%	84
97	83.60	Mt. Washington	46.03	\$59,115	84	0.7\%	61	82.3\%	104	60.2\%	76	7.7\%	93
98	85.20	Oakley	53	\$97,066	104	0.0\%	68	34.1\%	52	42.9\%	104	5.8\%	98
99	85.60	Clifton	72	\$61,250	88	0.0\%	68	73.9\%	96	49.3\%	93	10.4\%	83
100	87.40	Sayler Park	106	\$66,071	94	0.0\%	68	100.0\%	113	67.0\%	58	4.3\%	104
101	87.80	Mt. Washington	46.02	\$73,144	97	0.0\%	68	64.5\%	91	46.7\%	97	9.5\%	86
102	88.40	East Walnut Hills	42	\$90,259	102	0.0\%	68	82.2\%	103	41.1\%	106	16.1\%	63
103	90.20	Oakley	52	\$87,870	101	0.0\%	68	65.6\%	92	49.2\%	94	6.4\%	96
104	91.60	California	45	\$150,658	112	3.6\%	25	96.1\%	112	44.3\%	102	3.7\%	107
105	94.60	Mt. Adams	12	\$78,750	99	0.0\%	68	62.5\%	88	34.8\%	110	3.1\%	108
106	94.80	Mt. Adams	13	\$108,618	107	0.0\%	68	86.4\%	109	58.5\%	78	1.2\%	112
107	95.00	Pleasant Ridge	59	\$101,932	105	0.0\%	68	68.0\%	94	43.1\%	103	3.7\%	105
108	96.60	West End	14	\$250,001	115	0.0\%	68	60.1\%	86	27.4\%	114	5.1\%	100
109	97.40	Clifton	71	\$113,333	108	0.0\%	68	83.6\%	107	35.4\%	109	7.0\%	95
110	98.20	Mt. Lookout - Columbia Tusculum	47.01	\$113,333	108	0.0\%	68	83.5\%	106	39.5\%	107	4.7\%	102

[^6]Appendix III
Neighborhood Changes 1970-2009

	Census Tracts					SES Index
Neighborhoods	1970	1980	1990	2000	$\begin{array}{\|l\|} \hline 2005- \\ 2009 \end{array}$	1970
Avondale	34	34*	34	34	34	60.4
	66	66	66	66	66	49.4
	67	67*	67	67	67	42.4
	68	68	68	68	68	51
	69	69	69	69	69	60.8
						52.8
Bond Hill	63	63	63	63	63	84.4
	64	64	64	64	64	89.9
						87.15
California	45	45	45	45	45	62.2
Camp Washington	28	28	28	28	28	16.2
Carthage	61	61	61	61	61	50.7
CBD - Riverfront	6	6	6	6	6	96.7
	7	7	7	7	7	63.3
						80
Clifton	70	70	70	70	70	80.8
	71	71	71	71	71	101.5
	72	72	72	72	72	97.9
						93.40
College Hill	81	81	81	81	81	102.5
	82.01	82.01	82.01	82.01	82.01	96.9
	82.02	82.02	82.02	82.02	82.02	83.1
	84	84*	84	84	84	107.8

	Census Tracts					SES Index					Quartiles				
Neighborhoods	1970	1980	1990	2000	$\begin{aligned} & \hline 2005- \\ & 2009 \\ & \hline \end{aligned}$	1970	1980	1990	2000	2005-2009	1970	1980	1990	2000	$\begin{array}{\|l\|} \hline 2005- \\ 2009 \\ \hline \end{array}$
	111	111	111	111	111	113	101.4	107.6	89.2	75.4	4	4	4	4	3
						100.66	82.04	87.52	75.68	66.44					
Corryville	32	32	32	32	32	36.7	35.6	51	35.4	60.4	2	2	2	2	3
	33	33	33	33	33	49.8	65.5	59.6	52.4	48.6	2	3	2	2	2
						43.25	50.55	55.3	43.9	54.5					
East End	43	43	43	43	43	13.6	35.4	26.2	48.8	103	1	2	1	2	4
	44	44	44	44	44	23.1	21.6	32.2	44	51.8	1	1	1	2	2
						18.35	28.5	29.2	46.4	77.4					
East Price Hill	90					53.4					2				
	92	92*	92	92	92	74.4	59.2	44	34.2	25	3	3	2	2	1
	93	93	93	93	93	52.9	35.6	35	38.2	35.2	2	2	2	2	1
	94	94	94	94	94	53.7	45.2	32.6	27.8	21.8	2	2	2	1	1
	95	95	95	95	95	51.5	45.8	44	41.6	26.8	2	2	2	2	1
	96	96	96	96	96	54.8	52.3	53.4	48.2	36.2	2	2	2	2	2
						56.78	47.62	41.80	38.00	29.00					
East Walnut Hills	20	20	20	20	20	95.8	84	93.2	93.8	81.2	4	4	4	4	4
	42	42	42	42	42	76.5	73.8	82.4	97.4	88.4	3	3	3	4	4
						86.15	78.9	87.8	95.6	84.8					
Evanston	38	38	38	38	38	47.4	28.2	32.8	25.6	37.8	2	1	2	1	2
	39	39	39	39	39	36.1	28.8	34	32	34	2	2	2	1	1
	40	40	40	40	40	68.3	63.8	68.4	73.4	55	3	3	3	3	3
	41					61.7					2				
						53.38	40.27	45.07	43.67	42.27					
Evanston - E. Walnut Hills		41	41	41	41		46.3	59.4	68.8	65.6		2	2	3	3
Fairview Clifton	25	25	25	25	25	41.8	59.8	81.6	51.8	63.2	2	3	3	2	3
	26	26	26	26	26	35.8	59.8	65.6	54.4	48.6	2	3	3	2	2

NEIGHBORHOOD CHANGES 1970-2009

	Census Tracts					SES Index1970
Neighborhoods	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$	
	27	27	27	27	27	49.1
						42.23
Fay Apartments	86.02	85.02*	85.02	85.02	85.02	26.3
Hartwell	60	60	60	60	60	89.2
Hyde Park	49	49	49	49	49	110.1
	50	50	50	50	50	87.7
	51	51	51	51	51	109.2
						102.33
Kennedy Heights	58	58	58	58	58	93.4
Linwood		47.02	47.02	47.02	47.02	
Lower Price Hill	91	91*	91	91	91	21
Madisonville	55	55	55	55	55	72.3
	56	56	56	56	56	70.1
	108	108	108	108	108	49.5
						63.97
Mt. Adams	12	12	12	12	12	59.2
	13	13	13	13	13	61
						60.1
Mt. Airy	83	83	83	83	83	99.3
	85.01		85.01	85.01	85.01	
						99.3
Mt. Auburn	18	18	18	18	18	29.2
	22	22	22	22	22	41.6
	23	23	23	23	23	33.3
						34.70
Mt. Lookout	47	47.01				63

NEIGHBORHOOD CHANGES 1970-2009															
	Census Tracts					SES Index					Quartiles				
Neighborhoods	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$	1970	1980	1990	2000	2005-2009	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$
	48	48*	48	48	48	107.9	112.2	118.2	112.2	102.6	4	4	4	4	4
						85.45	101.7	118.2	112.2						
Mt. Lookout - Columbia Tusculum		47.01*	47.01	47.01	47.01		91.2	102.4	104.6	98.2		4	4	4	4
Mt. Washington	46.01	46.01	46.01	46.01	46.01	105.7	100	81.4	89.6	75.8	4	4	3	4	4
	46.02	46.02	46.02	46.02	46.02	107.1	99.6	102	98.6	87.8	4	4	4	4	4
	46.03	46.03	46.03	46.03	46.03	110	97.2	102.2	93.6	83.6	4	4	4	4	4
						107.60	98.93	95.20	93.93	82.40					
N. Avondale Paddock Hills	65	65	65	65	65	106.4	87	96.2	84	75	4	4	4	4	3
N. Fairmount English Woods	86.01	86.01*	86.01	86.01	86.01	21.5	17.8	14.2	15.4	34.8	1	1	1	1	1
Northside	74	74	74	74	74	32.4	30.4	31.6	31.2	44.8	1	1	1	1	2
	75	75	75	75	75	79	66	86.8	65.6	67.2	3	3	4	3	3
	78	78	78	78	78	53.2	45	37.2	46	64.4	2	2	2	2	3
	79	79*	79	79	79	71.1	46	55.6	52.2	68.4	3	2	2	2	3
						58.925	46.85	52.8	48.75	61.2					
Oakley	52	52	52	52	52	80.1	82.7	95.8	96.2	90.2	3	4	4	4	4
	53	53	53	53	53	83.8	77.8	91	95.6	85.2	3	3	4	4	4
	54	54	54	54	54	57.2	56.4	59.6	65	53.6	2	2	2	3	2
						73.70	72.30	82.13	85.60	76.33					
Over-the-Rhine	9	9	9	9	9	28.2	9.6	22.4	3	30.4	1	1	1	1	1
	10	10	10	10	10	17.7	11.6	12.8	23.6	56.4	1	1	1	1	3
	11	11	11	11	11	20.3	9	30.6	25.4	55.8	1	1	1	1	3
	16	16	16	16	16	23.2	10.2	16	10.8	27.2	1	1	1	1	1
	17	17	17	17	17	7	5.4	12	15.4	31.4	1	1	1	1	1
	24					33.4					1				

NEIGHBORHOOD CHANGES 1970-2009															
	Census Tracts					SES Index					Quartiles				
Neighborhoods	1970	1980	1990	2000	$\begin{array}{\|l} 2005- \\ 2009 \\ \hline \end{array}$	1970	1980	1990	2000	2005-2009	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$
						21.633333	9.16	18.76	15.64	40.24					
Pleasant Ridge	57.01	57.01	57.01	57.01	57.01	95.6	98.8	105.2	96.2	82.8	4	4	4	4	4
	57.02	57.02	57.02	57.02	57.02	89.2	76.4	68.2	69.6	75.8	4	3	3	3	4
	59	59	59	59	59	100.5	92.8	96.2	88.4	95	4	4	4	4	4
						95.10	89.33	89.87	84.73	84.53					
Riverside Sayler Park	104	104	104	104	104	49	71.6	69.8	70.4	32	2	3	3	3	1
Roselawn	62.01	62.01	62.01	62.01	62.01	109.2	93	73.2	63.4	51	4	4	3	3	2
	62.02	62.02	62.02	62.02	62.02	38.1				--- ${ }^{\text {a }}$	2				---
	110	110	110	110	110	111.1	86.6	76.2	65.2	37.2	4	4	3	3	2
						86.13	89.80	74.70	64.30	$44.1^{\text {a }}$					
S. Cumminsville Millvale	76					35.7					2				
	77	77*	77	77	77	19	11.2	13.2	15.4	11.6	1	1	1	1	1
						27.35	11.2	13.2	13.2	11.6					
S. Fairmount	87	87	87	87	87	25.9	22.8	20.4	21	28	1	1	1	1	1
	89	89*	89	89	89	59.1	57.6	48.8	37.8	43.6	2	2	2	2	2
						42.5	40.2	34.6	29.4	35.8					
Sayler Park	105	105	105	105	105	64.4	63.5	72.6	69.4	65.6	3	3	3	3	3
	106	106	106	106	106	85	78.6	88.4	65.6	87.4	3	3	4	3	4
						74.7	71.05	80.5	67.5						
Sedamsville - Riverside	103	103	103	103	103	25.1	39	35.8	35.4	33	1	2	2	2	1
University Heights	29	29	29	29	29	82.8	84.2	80	67	52.6	3	3	3	3	2
	30	30	30	30	30	69.1	73.1	71.4	60.4	60.4	3	3	3	3	3
						75.95	78.65	75.7	63.7	56.5					
Walnut Hills	19	19	19	19	19	31.2	32.6	78.6	65.2	72	1	2	3	3	3

NEIGHBORHOOD CHANGES 1970-2009															
	Census Tracts					SES Index					Quartiles				
Neighborhoods	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$	1970	1980	1990	2000	2005-2009	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$
	21	21	21	21	21	29.4	15.6	26	23.2	22.2	1	1	1	1	1
	35	35	35	35	35	39.3	21.4	29.2	16.6	19	2	1	1	1	1
	36	36	36	36	36	29.7	20	24	30	21.6	1	1	1	1	1
	37	37	37	37	37	43.6	29.4	31.6	22.4	29	2	1	1	1	1
						34.64	23.8	37.88	31.48	32.76					
West End	2	2	2	2	2	49.6	40.4	24	14	13.8	2	2	1	1	1
	3.01	3.01	3.01	3.01	3.01	16.8	6.6	5.6	10.4	23.2	1	1	1	1	1
	3.02	3.02	3.02	3.02	3.02	14.7	11	7.6	22.2	38.6	1	1	1	1	2
	4	4	4	4	4	36.7	34.8	42.4	49	55.6	2	2	2	2	3
	14	14	14	14	8	32.9	12.8	18.6	47.8	48	1	1	1	2	2
	15	15	15	15	14	18	13.2	15.8	39.8	96.6	1	1	1	2	4
	8	8	8	8	15	25.6	9.6	24.6	16	26.6	1	1	1	1	1
						27.76	18.34	19.80	28.46	43.20					
West Price Hill	97	97	97	97	97	61	63.2	56.4	56.8	36	2	3	2	3	2
	98	98	98	98	98	75.1	73.2	69.4	54.8	24.4	3	3	3	2	1
	99.01	99.01	99.01	99.01	99.01	90	90.1	91.8	92.6	71.8	4		4	4	3
	99.02	99.02	99.02	99.02	99.02	82.2	76	76.8	79.4	51.6	3	3	3	3	2
	107	107	107	107	107	88.9	90.1	90.4	94.2	83	4	4	4	4	4
						79.44	78.52	76.96	75.56	53.36					
Westwood	100	88*	88	88	88	107.1	65.8	46.6	28.6	24.6	4	3	2	1	1
		100.01	100.01	100.01	100.1		92.1	89	63.2	51.6		4	4	3	2
		100.02	100.02	100.02	100.2		70.4	59.4	40.2	42		3	2	2	2
	101	101	101	101	101	88.3	90.6	95.4	91	80.4	4	4	4	4	4
	102.01	102.01	102.01	102.01	102.1	91.7	88.6	87.6	87.6	74.2	4	4	4	4	3
	102.02	102.02	102.02	102.02	102.2	95.7	104	105.2	99	77.2	4	4	4	4	4
	109	109	109	109	109	88.5	84.4	78.8	68.2	57.8	4	4	3	3	3
						94.26	85.13	80.29	68.26	58.26					
Winton Hills	80	80	80	80	80	32.4	19	22.2	17.4	29	1	1	1	1	1

NEIGHBORHOOD CHANGES 1970-2009

NEIGHBORHOOD CHANGES 1970-2009															
	Census Tracts					SES Index					Quartiles				
Neighborhoods	1970	1980	1990	2000	$\begin{array}{\|l\|} \hline 2005- \\ 2009 \\ \hline \end{array}$	1970	1980	1990	2000	2005-2009	1970	1980	1990	2000	$\begin{aligned} & 2005- \\ & 2009 \end{aligned}$
Winton Place	73	73	73	73	73	48.1	53.2	62.6	52.6	41.8	2	2	3	2	2
Queensgate	1	1	1	1	1	17.1				---	1				---
	5					34.4					2				
						25.8									
${ }^{\text {a }}$ SES Index Value not calculated for Census tract 62.02 due to lack of data for four of the five SES indicator values. Consequenally, th Index value is the average of the two tracts with available data.															

Appendix IV
SES INDEX AND VARIABLES FOR CINCINNATI METROPOLITAN AREA CENSUS TRACTS, 2005-2009

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
1	14.4	Hamilton	77	1	\$15,732	12	4.0\%	34	8.4\%	17	96.7\%	1	41.8\%	8
2	16	Hamilton	2	1	\$28,654	34	8.2\%	8	2.6\%	12	94.5\%	2	34.1\%	24
3	17	Kenton	671	1	\$14,512	10	10.7\%	3	10.0\%	19	89.3\%	9	29.0\%	44
4	24.6	Campbell	501	1	\$19,398	16	4.7\%	25	25.7\%	41	83.7\%	24	37.5\%	17
5	28.6	Hamilton	36	1	\$22,125	17	3.4\%	43	34.7\%	68	90.8\%	6	41.1\%	9
6	29.6	Campbell	505	1	\$26,304	26	5.0\%	24	29.2\%	51	81.7\%	37	40.5\%	10
7	30.4	Hamilton	88	1	\$28,964	36	6.3\%	16	31.5\%	57	89.3\%	8	31.1\%	35
7	30.4	Hamilton	98	1	\$26,378	27	7.5\%	11	41.1\%	80	90.1\%	7	32.5\%	27
9	33.6	Hamilton	94	1	\$22,788	19	16.9\%	1	24.4\%	38	77.8\%	73	31.0\%	37
10	34.4	Hamilton	21	1	\$44,583	89	10.9\%	2	0.0\%	1	81.0\%	46	31.1\%	34
11	34.8	Hamilton	95	1	\$31,731	42	5.7\%	21	36.6\%	70	84.8\%	20	34.8\%	21
12	35.8	Hamilton	92	1	\$30,333	39	9.7\%	6	48.4\%	109	85.2\%	18	42.1\%	7
13	37.2	Hamilton	67	1	\$15,938	13	7.0\%	12	19.4\%	29	88.1\%	11	17.7\%	121
14	37.6	Hamilton	85.02	1	\$7,459	3	7.5\%	10	0.0\%	1	70.2\%	149	33.2\%	25
15	39.2	Hamilton	87	1	\$41,161	73	9.9\%	4	49.5\%	111	92.1\%	4	47.5\%	4
16	42	Hamilton	85.01	1	\$26,514	28	5.9\%	19	13.1\%	20	76.8\%	82	24.4\%	61
17	46	Hamilton	28	1	\$32,733	45	4.3\%	28	54.2\%	128	84.2\%	23	44.4\%	6
18	51.2	Hamilton	16	1	\$8,725	4	7.8\%	9	53.8\%	124	73.3\%	114	45.8\%	5
19	51.8	Hamilton	104	1	\$33,625	48	2.9\%	55	15.8\%	24	78.3\%	66	22.7\%	66
20	53.2	Hamilton	93	1	\$35,889	56	5.7\%	20	33.3\%	61	77.3\%	77	25.6\%	52
20	53.2	Hamilton	110	1	\$41,090	72	4.4\%	27	49.6\%	112	86.1\%	14	29.7\%	41
22	55.2	Hamilton	35	1	\$16,203	14	0.0\%	247	0.0\%	1	93.9\%	3	39.7\%	11
23	56.2	Hamilton	262	1	\$33,750	49	9.8\%	5	52.0\%	118	91.6\%	5	19.6\%	104
24	56.4	Hamilton	39	1	\$35,500	54	2.9\%	57	20.0\%	30	81.5\%	40	19.8\%	101
25	58.4	Kenton	650	1	\$36,629	58	4.2\%	30	44.1\%	92	85.6\%	16	20.4\%	96
26	60.2	Hamilton	3.01	1	\$12,981	8	3.0\%	49	0.0\%	1	63.6\%	230	38.6\%	13
26	60.2	Hamilton	257	1	\$43,963	86	1.6\%	124	26.3\%	43	82.6\%	30	37.3\%	18

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
28	64.2	Hamilton	228	1	\$48,958	109	2.6\%	70	37.6\%	74	83.3\%	26	29.4\%	42
29	67.2	Hamilton	68	1	\$24,092	21	0.0\%	247	15.9\%	25	85.9\%	15	32.4\%	28
29	67.2	Hamilton	97	1	\$31,996	43	1.3\%	141	21.2\%	34	79.6\%	55	23.8\%	63
31	68	Hamilton	61	1	\$39,798	67	4.3\%	29	45.6\%	99	77.1\%	80	22.8\%	65
32	70	Hamilton	96	1	\$38,607	64	2.7\%	64	16.7\%	26	68.1\%	174	34.5\%	22
33	71.2	Hamilton	47.02	1	\$42,031	77	2.4\%	78	46.7\%	105	75.2\%	95	56.9\%	
34	71.4	Hamilton	37	1	\$14,904	11	1.4\%	134	6.8\%	16	68.1\%	176	35.6\%	20
35	71.6	Hamilton	15	1	\$14,327	9	0.0\%	247	0.0\%	1	78.5\%	61	29.8\%	40
36	72.2	Hamilton	73	1	\$42,173	78	2.0\%	97	22.5\%	36	78.0\%	68	21.3\%	82
37	73.2	Hamilton	64	1	\$33,050	47	1.9\%	103	31.0\%	55	77.5\%	74	20.9\%	87
38	73.8	Campbell	512	1	\$27,061	30	0.0\%	247	27.4\%	46	88.6\%	10	31.1\%	36
38	73.8	Hamilton	227	1	\$29,855	38	0.9\%	166	31.6\%	59	78.4\%	63	29.1\%	43
40	74	Hamilton	103	1	\$26,250	25	0.0\%	247	37.1\%	71	83.4\%	25	49.9\%	
41	77.8	Hamilton	223.01	1	\$46,918	99	3.3\%	44	62.4\%	157	84.4\%	22	22.6\%	67
42	78	Kenton	612	1	\$49,083	111	2.3\%	86	41.6\%	83	78.4\%	64	27.7\%	46
42	78	Hamilton	80	1	\$10,135	6	0.0\%	247	4.3\%	13	75.3\%	94	31.7\%	30
44	79	Kenton	651	1	\$30,911	40	2.3\%	88	30.0\%	54	69.5\%	158	25.2\%	55
45	79.8	Hamilton	86.01	1	\$31,176	41	0.0\%	247	28.8\%	49	80.3\%	50	39.4\%	12
46	81.8	Hamilton	69	1	\$47,837	105	1.4\%	137	29.5\%	52	79.2\%	57	24.6\%	58
47	82	Hamilton	9	1	\$28,077	33	0.0\%	247	0.0\%	1	73.5\%	113	37.7\%	16
48	82.6	Hamilton	100.02	1	\$34,684	51	0.8\%	175	24.7\%	40	83.2\%	28	17.7\%	119
49	82.8	Hamilton	216.04	1	\$43,365	82	3.0\%	50	43.9\%	91	76.5\%	83	18.8\%	108
50	83.4	Hamilton	66	1	\$28,071	32	2.7\%	62	14.0\%	22	62.3\%	242	24.6\%	59
51	83.8	Hamilton	63	1	\$32,654	44	0.0\%	247	20.8\%	32	84.6\%	21	21.8\%	75
52	84.6	Warren	325	1	\$48,307	107	3.3\%	45	62.0\%	154	81.3\%	43	21.8\%	74
53	85.2	Hamilton	34	1	\$7,243	1	0.0\%	247	0.0\%	1	70.0\%	154	34.3\%	23
54	85.4	Clermont	402.04	1	\$47,029	101	2.0\%	96	47.9\%	108	82.6\%	32	20.9\%	90
54	85.4	Hamilton	38	1	\$27,973	31	0.0\%	247	27.1\%	45	79.4\%	56	27.1\%	48
56	86.4	Hamilton	255	1	\$45,789	95	2.6\%	69	53.1\%	122	75.4\%	92	25.4\%	54

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
57	87.2	Hamilton	207.42	1	\$53,219	139	5.2\%	22	64.4\%	168	83.2\%	27	21.5\%	80
58	89.6	Clermont	418	1	\$42,845	80	6.7\%	13	66.2\%	180	76.1\%	87	20.9\%	88
59	89.8	Kenton	609	1	\$29,196	37	1.7\%	108	41.5\%	82	72.1\%	128	20.6\%	94
60	90.6	Hamilton	215.09	1	\$47,515	104	3.6\%	41	34.2\%	66	78.4\%	62	13.9\%	180
61	90.8	Kenton	644	1	\$50,457	122	6.5\%	14	43.0\%	89	78.9\%	59	14.2\%	170
62	91	Boone	701	1	\$42,025	76	1.1\%	155	33.7\%	62	78.8\%	60	19.7\%	102
62	91	Campbell	502	1	\$28,846	35	0.0\%	247	6.7\%	15	71.6\%	132	33.1\%	26
64	91.6	Clermont	409	1	\$53,265	140	6.4\%	15	64.6\%	170	82.1\%	34	20.0\%	99
65	93.4	Warren	302	1	\$43,697	85	2.9\%	53	76.4\%	244	80.9\%	47	30.5\%	38
66	94.8	Hamilton	100.01	1	\$45,909	96	2.6\%	72	45.6\%	98	74.4\%	102	19.2\%	106
67	95	Hamilton	62.01	1	\$41,373	74	1.8\%	106	40.4\%	79	72.3\%	125	20.9\%	91
68	96.4	Hamilton	23	1	\$38,359	63	3.7\%	39	13.8\%	21	51.7\%	320	30.3\%	39
69	97.6	Kenton	669	1	\$50,139	118	3.2\%	46	66.5\%	184	79.9\%	54	21.1\%	86
69	97.6	Hamilton	22	1	\$36,500	57	1.1\%	153	33.1\%	60	68.8\%	168	26.1\%	50
71	99.6	Warren	305.01	1	\$45,313	93	1.9\%	101	53.3\%	123	76.1\%	86	20.5\%	95
72	99.8	Boone	703.01	1	\$40,407	69	1.1\%	159	61.7\%	152	81.4\%	41	21.5\%	78
73	100.2	Hamilton	99.02	1	\$40,288	68	1.7\%	117	31.4\%	56	74.5\%	101	15.0\%	159
74	100.6	Hamilton	89	1	\$23,750	20	0.0\%	247	29.6\%	53	85.6\%	17	14.6\%	166
75	101.2	Hamilton	74	1	\$38,882	65	2.2\%	93	4.9\%	14	75.2\%	97	10.7\%	237
76	101.6	Hamilton	83	1	\$50,734	125	3.9\%	36	46.7\%	104	70.1\%	150	20.7\%	93
77	101.8	Clermont	416	1	\$54,289	145	4.1\%	31	55.9\%	133	73.0\%	119	21.5\%	81
78	102.6	Dearborn	803	1	\$51,100	128	2.7\%	65	71.7\%	222	81.3\%	42	24.9\%	56
78	102.6	Clermont	420	1	\$49,965	116	1.4\%	135	62.2\%	155	82.1\%	35	22.2\%	72
80	102.8	Kenton	607	1	\$37,083	61	1.2\%	146	38.0\%	75	67.2\%	187	27.8\%	45
81	103.8	Hamilton	17	1	\$7,434	2	0.0\%	247	0.0\%	1	61.1\%	254	37.8\%	15
82	105.8	Hamilton	216.02	1	\$39,750	66	3.8\%	37	46.6\%	103	67.5\%	182	15.9\%	141
83	106	Hamilton	252	1	\$50,439	121	0.9\%	162	47.6\%	107	78.2\%	67	22.1\%	73
84	107.2	Kenton	616	1	\$26,563	29	2.2\%	89	51.0\%	116	59.8\%	273	31.8\%	29
85	107.6	Hamilton	217.02	1	\$49,135	112	2.3\%	81	55.8\%	131	71.2\%	135	21.5\%	79

Family Structure Family Structure \quad Occupation
Education

 ず $\stackrel{\times}{\stackrel{\rightharpoonup}{0}}$

	$\begin{aligned} & \dot{\underline{1}} \\ & \stackrel{\rightharpoonup}{\tilde{\sim}} \end{aligned}$	8	ก	$\begin{array}{\|l\|} \hline \stackrel{4}{7} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline \end{array}$	삿	$\stackrel{0}{7}$	$$	ス	\bigcirc	$$	8	N	$\stackrel{\text { N }}{ }$	\wedge	$\underset{\underset{\sim}{7}}{\stackrel{\rightharpoonup}{7}}$	¢	$\stackrel{\infty}{\sim}$		∞	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\text { ® }}{ }$		$\begin{aligned} & \hline \stackrel{\rightharpoonup}{m} \\ & \hline \end{aligned}$	$\stackrel{\wedge}{7}$	ᄂ	$\underset{\sim}{\infty}$	∞	$\stackrel{\text { in }}{ }$	$\stackrel{3}{\square}$
$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & \hline \bar{k} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$			$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$			$\left\|\begin{array}{c} \stackrel{n}{0} \\ 0 \\ \underset{\sim}{7} \end{array}\right\|$		$$		$\begin{aligned} & \mathbb{N} \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\left\|\begin{array}{c} \hat{0} \\ - \\ 3 \\ 0 \\ 0 \end{array}\right\|$		$\begin{aligned} & 0 \\ & N \\ & N \\ & \substack{2 \\ \infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \omega_{j}^{0} \\ & \nrightarrow \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & \vec{f} \\ & \omega_{2} \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & o \\ & \dot{c} \\ & \dot{f} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & -1 \\ & \hdashline \end{aligned}$	$$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & N \\ & \forall \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \\ & \hdashline \end{aligned}$	$\begin{aligned} & 0 \\ & \tilde{m}_{2} \\ & \stackrel{\sim}{n} \end{aligned}$	$\begin{aligned} & n \\ & \vec{n} \\ & n \\ & \\ & \hline \end{aligned}$		$\left\|\right\|$	
		\rightarrow	－	－	\checkmark	\checkmark	\checkmark	\checkmark	$-$	\rightarrow	\rightarrow	$-$	\checkmark	\exists	\sim	N	\sim													
$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{n} \\ \stackrel{y}{n} \\ \stackrel{n}{n} \\ \stackrel{\rightharpoonup}{u} \\ \stackrel{U}{U} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{2} \\ \vdots \mathbf{z} \end{array}\right\|$	$\begin{array}{\|l} \hline \\ \hline \end{array}$	$\frac{9}{3}$	$\stackrel{\infty}{\circ}$	L	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{\mathrm{N}}$	$\begin{array}{\|c} \mathrm{N} \\ \mathrm{O} \\ \mathrm{O} \\ \mathrm{i} \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{子}{\mathrm{~J}} \end{aligned}$	$\begin{aligned} & \underset{3}{3} \\ & \underset{子}{7} \end{aligned}$	F	N	m	$\underset{\sim}{\mathrm{N}}$	స̀	$\left.\begin{array}{\|c} \underset{N}{N} \\ \hat{N} \\ \underset{N}{2} \end{array} \right\rvert\,$	こ	$\begin{gathered} \underset{\sim}{N} \\ \underset{i}{\prime} \end{gathered}$	$\stackrel{0}{0}$	$\begin{aligned} & \stackrel{N}{0} \\ & \stackrel{\infty}{N} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{m}}{\stackrel{n}{2}}$	$\begin{gathered} \underset{\sim}{7} \\ \stackrel{\rightharpoonup}{n} \end{gathered}$	$\stackrel{\hat{u}}{0}$	$\stackrel{a}{n}$	ᄂ	－	$\begin{array}{\|l\|} \hline \infty \\ 0 \\ \hline \end{array}$	® \sim \sim \sim	－

	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \text { E } \\ & \text { 號 } \\ & \text { 荷 } \end{aligned}$		$$	\circ				$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \dot{E} \\ \frac{0}{U} \end{gathered}$	E	플	2			\％	\％				$\begin{aligned} & =\frac{0}{2} \\ & \frac{0}{7} \\ & \sqrt[\pi]{1} \end{aligned}$			E 3 3			I		I				EI
$\begin{gathered} \text { x } \\ \stackrel{\rightharpoonup}{0} \\ \underline{\underline{n}} \end{gathered}$	$\begin{array}{\|l\|} \hline 0 \\ \infty \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline N \\ \text { O} \\ \hline \end{array}$	$$	$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{I} \end{aligned}$	$\underset{7}{7}$	$\stackrel{\stackrel{\circ}{\mathrm{i}}}{ }$		$\begin{aligned} & \infty \\ & \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \underset{\sim}{i} \end{aligned}$					$\begin{aligned} & \underset{\sim}{4} \\ & \overrightarrow{7} \end{aligned}$						$\underset{\underset{\sim}{7}}{ }$	$\stackrel{\sim}{7}$	$\begin{aligned} & \infty \\ & \stackrel{\oplus}{0} \\ & \underset{\sim}{n} \end{aligned}$	N							$\begin{array}{\|l\|} \stackrel{\rightharpoonup}{j} \\ \underset{\sim}{2} \end{array}$	$\stackrel{\sim}{n}$	N
$\begin{aligned} & \underset{\sim}{c} \\ & \underset{\sim}{c} \end{aligned}$	∞	${ }_{\infty}$	∞	¢	8	бু	No		n	す	ᄂ				\propto	g	O				악	$\stackrel{\square}{7}$	$\stackrel{\text { L }}{\sim}$	\bigcirc		¢					$\underset{7}{7}$	$\stackrel{m}{7}$	析

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
115	135.4	Campbell	511.01	2	\$43,380	84	4.0\%	33	76.5\%	246	67.2\%	185	16.9\%	129
115	135.4	Hamilton	8	2	\$34,167	50	0.0\%	247	0.0\%	1	54.0\%	309	22.5\%	70
117	136.6	Dearborn	805	2	\$51,716	133	0.0\%	247	59.6\%	146	82.6\%	31	17.1\%	126
118	137	Hamilton	258	2	\$61,477	186	2.1\%	95	50.7\%	115	76.1\%	88	12.5\%	201
119	137.6	Hamilton	217.01	2	\$49,487	113	0.8\%	171	50.7\%	114	72.5\%	123	14.6\%	167
120	138	Hamilton	26	2	\$18,627	15	0.0\%	247	16.9\%	27	71.7\%	130	8.4\%	271
121	139	Hamilton	204.01	2	\$62,464	190	1.9\%	102	65.5\%	176	74.2\%	104	17.6\%	123
122	139.8	Hamilton	261.02	2	\$50,483	123	1.2\%	148	83.6\%	301	81.6\%	38	20.9\%	89
123	140.2	Hamilton	261.01	2	\$58,371	166	1.7\%	109	69.9\%	210	75.2\%	96	17.7\%	120
124	140.8	Warren	321	2	\$54,435	146	0.3\%	241	58.3\%	139	73.8\%	110	22.6\%	68
125	141.8	Hamilton	216.03	2	\$68,442	234	2.9\%	56	63.4\%	163	72.9\%	121	16.2\%	135
126	144	Hamilton	40	2	\$32,780	46	0.0\%	247	27.0\%	44	74.0\%	107	8.1\%	276
127	144.6	Hamilton	249.01	2	\$60,769	181	0.0\%	247	75.0\%	236	87.5\%	12	27.5\%	47
128	146.6	Kenton	637.02	2	\$52,038	135	2.1\%	94	93.2\%	368	79.9\%	53	21.2\%	83
129	146.8	Hamilton	234	2	\$45,636	94	1.8\%	107	45.4\%	96	60.3\%	264	14.1\%	173
130	147.2	Boone	703.04	2	\$55,795	152	0.0\%	247	77.9\%	261	81.1\%	44	31.2\%	32
131	148.4	Hamilton	215.06	2	\$55,893	154	0.0\%	247	34.6\%	67	70.8\%	143	16.8\%	131
132	149.4	Warren	301.02	2	\$57,679	164	0.0\%	247	74.5\%	233	81.6\%	39	23.1\%	64
133	149.6	Warren	315	2	\$66,113	217	2.5\%	73	60.6\%	150	72.5\%	124	13.6\%	184
134	150.2	Clermont	417.02	2	\$63,919	199	1.5\%	127	55.1\%	130	67.5\%	181	18.0\%	114
134	150.2	Hamilton	41	2	\$41,042	70	4.1\%	32	53.0\%	121	46.8\%	345	13.8\%	183
134	150.2	Hamilton	60	2	\$51,697	132	1.4\%	136	58.5\%	142	65.4\%	213	17.0\%	128
137	151.4	Kenton	656	2	\$48,511	108	0.0\%	247	41.9\%	84	71.6\%	133	13.6\%	185
138	152.8	Hamilton	78	2	\$51,571	130	0.8\%	173	45.4\%	97	62.7\%	239	17.2\%	125
139	153.2	Kenton	642	2	\$59,174	172	3.9\%	35	85.8\%	318	75.3\%	93	15.6\%	148
140	153.8	Boone	705.02	2	\$67,589	232	3.8\%	38	85.7\%	317	79.1\%	58	17.5\%	124
141	154.8	Hamilton	105	2	\$63,922	200	0.0\%	247	56.6\%	137	80.4\%	48	15.9\%	142
141	154.8	Warren	301.01	2	\$65,313	208	1.6\%	120	71.6\%	221	78.0\%	69	15.1\%	156
143	155.4	Hamilton	232.22	2	\$54,583	147	0.7\%	184	62.7\%	159	76.2\%	85	12.4\%	202

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
144	156	Hamilton	27	2	\$25,333	23	0.0\%	247	68.2\%	198	67.0\%	194	17.7\%	118
145	157.4	Clermont	413.04	2	\$66,893	226	2.3\%	82	69.8\%	208	69.8\%	155	17.8\%	116
146	157.6	Hamilton	81	2	\$60,549	179	0.7\%	190	45.9\%	100	60.6\%	259	24.4\%	60
147	158.4	Clermont	408	2	\$62,007	188	2.7\%	67	77.5\%	258	74.0\%	108	14.1\%	171
148	158.6	Kenton	659	2	\$59,013	169	0.9\%	170	60.7\%	151	75.0\%	98	12.4\%	205
149	160.6	Hamilton	79	2	\$54,097	144	0.0\%	247	59.4\%	145	73.5\%	112	15.2\%	155
150	160.8	Hamilton	10	2	\$24,643	22	0.0\%	247	14.4\%	23	45.6\%	348	14.7\%	164
151	161.6	Hamilton	215.72	2	\$56,486	157	0.7\%	193	44.6\%	94	70.8\%	141	11.4\%	223
152	165.4	Campbell	511.02	2	\$51,607	131	0.0\%	247	70.1\%	212	84.9\%	19	11.6\%	218
153	166.6	Hamilton	25	2	\$41,083	71	0.0\%	247	21.1\%	33	57.2\%	291	13.0\%	191
154	166.8	Clermont	407.01	2	\$56,319	155	1.8\%	104	37.3\%	72	57.8\%	287	11.8\%	216
155	168.4	Hamilton	32	2	\$36,875	59	6.1\%	18	21.9\%	35	45.2\%	352	1.6\%	378
156	168.6	Hamilton	218.01	2	\$53,833	142	0.5\%	216	43.2\%	90	71.1\%	137	9.5\%	258
157	169	Hamilton	84	2	\$43,365	82	0.0\%	247	28.8\%	50	64.7\%	222	10.2\%	244
158	169.2	Hamilton	238	2	\$59,071	170	0.2\%	244	56.5\%	136	70.7\%	144	15.4\%	152
159	169.4	Hamilton	207.05	2	\$66,600	221	0.0\%	247	63.1\%	162	73.1\%	117	19.9\%	100
160	169.8	Hamilton	99.01	2	\$59,489	173	0.8\%	174	64.9\%	171	67.9\%	178	15.2\%	153
161	170.2	Hamilton	254.02	2	\$58,971	168	0.9\%	163	63.0\%	160	61.8\%	247	18.1\%	113
162	170.4	Clermont	414.03	2	\$53,676	141	0.7\%	188	56.3\%	135	65.9\%	206	13.8\%	182
162	170.4	Hamilton	205.05	2	\$64,028	201	0.0\%	247	53.8\%	127	76.0\%	89	13.2\%	188
164	170.6	Campbell	521	2	\$53,856	143	0.0\%	247	67.1\%	187	68.8\%	169	19.2\%	107
165	170.8	Hamilton	82.01	2	\$57,357	162	1.7\%	116	46.5\%	102	66.5\%	199	8.1\%	275
166	171	Hamilton	209.01	2	\$50,417	120	0.8\%	176	72.5\%	226	68.4\%	171	14.9\%	162
166	171	Hamilton	215.71	2	\$66,250	218	3.0\%	52	65.0\%	172	58.9\%	277	16.2\%	136
168	173.2	Hamilton	215.04	2	\$57,239	160	0.9\%	161	42.8\%	87	65.2\%	217	10.4\%	241
169	173.6	Kenton	638	2	\$49,536	114	1.3\%	143	55.8\%	132	55.3\%	303	14.0\%	176
169	173.6	Hamilton	30	2	\$35,208	53	8.7\%	7	84.9\%	312	65.9\%	205	7.3\%	291
171	175.6	Hamilton	19	2	\$55,114	148	1.3\%	138	35.2\%	69	44.9\%	355	14.6\%	168
172	176.2	Hamilton	209.02	2	\$55,259	149	0.5\%	215	66.3\%	182	69.7\%	156	13.9\%	179

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
172	176.2	Hamilton	253	2	\$52,750	137	0.0\%	247	70.1\%	214	65.4\%	214	22.5\%	69
174	176.4	Clermont	401.02	2	\$64,450	203	1.6\%	122	77.3\%	255	74.2\%	105	12.7\%	197
174	176.4	Hamilton	256	2	\$44,965	91	0.0\%	247	53.8\%	126	62.6\%	240	14.0\%	178
176	177	Hamilton	75	2	\$57,019	158	0.0\%	247	24.5\%	39	56.7\%	294	15.6\%	147
177	178.2	Hamilton	225	2	\$64,946	205	1.1\%	156	59.1\%	143	70.0\%	153	10.9\%	234
178	178.4	Boone	706.04	2	\$62,419	189	2.8\%	58	77.6\%	259	67.5\%	183	12.4\%	203
179	180.8	Dearborn	806	2	\$65,578	212	0.2\%	242	72.5\%	225	82.3\%	33	12.9\%	192
180	181.2	Hamilton	102.01	2	\$57,146	159	0.6\%	209	61.9\%	153	62.6\%	241	15.7\%	144
181	183.4	Kenton	613	2	\$50,846	126	1.3\%	144	82.7\%	294	60.5\%	261	20.8\%	92
182	184	Clermont	401.01	2	\$68,875	235	0.4\%	221	81.1\%	280	77.2\%	79	19.5\%	105
183	185	Hamilton	65	2	\$59,500	174	0.9\%	168	52.2\%	119	57.4\%	290	14.0\%	174
184	186.6	Hamilton	210.01	2	\$50,250	119	0.0\%	247	72.7\%	227	75.7\%	90	9.9\%	250
185	187.2	Hamilton	215.08	2	\$65,404	209	1.1\%	154	65.0\%	173	70.9\%	140	9.1\%	260
186	187.8	Warren	306	2	\$67,880	233	1.0\%	160	65.8\%	179	65.8\%	207	15.0\%	160
187	190	Hamilton	260.02	2	\$64,234	202	0.0\%	247	69.9\%	209	69.4\%	159	16.5\%	133
188	190.2	Kenton	654	2	\$98,065	340	0.0\%	247	42.5\%	86	80.0\%	52	11.3\%	226
189	190.4	Warren	323	2	\$60,872	182	0.0\%	247	56.1\%	134	66.8\%	196	12.9\%	193
190	190.6	Campbell	530	2	\$58,657	167	0.0\%	247	50.7\%	113	62.9\%	236	13.1\%	190
191	190.8	Kenton	670	2	\$101,563	348	1.6\%	123	31.6\%	58	53.2\%	314	18.2\%	111
192	191.6	Hamilton	215.05	3	\$63,841	198	0.0\%	247	58.3\%	140	69.1\%	166	12.2\%	207
193	192	Clermont	413.02	3	\$65,053	206	0.8\%	180	69.1\%	204	70.2\%	148	11.6\%	222
193	192	Hamilton	11	3	\$9,205	5	0.0\%	247	0.0\%	1	45.5\%	350	3.7\%	357
195	193.8	Dearborn	804	3	\$66,798	224	1.5\%	128	75.0\%	235	69.7\%	157	11.3\%	225
195	193.8	Clermont	405	3	\$52,614	136	0.0\%	247	65.6\%	178	67.6\%	180	11.3\%	228
197	194	Hamilton	214.21	3	\$81,597	294	1.7\%	114	67.5\%	190	76.3\%	84	7.4\%	288
198	194.4	Clermont	402.03	3	\$66,731	223	0.0\%	247	77.2\%	254	74.4\%	103	15.6\%	145
199	194.8	Dearborn	801.01	3	\$60,966	184	1.4\%	131	92.9\%	367	72.2\%	127	14.7\%	165
200	197.8	Hamilton	232.1	3	\$59,856	175	0.4\%	228	65.4\%	174	65.3\%	216	12.7\%	196
201	198	Hamilton	111	3	\$63,542	195	3.0\%	51	67.7\%	192	64.5\%	225	5.1\%	327

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
202	198.2	Kenton	646	3	\$75,208	268	1.5\%	126	63.6\%	164	65.8\%	209	11.4\%	224
203	198.4	Hamilton	46.01	3	\$64,702	204	0.4\%	229	39.5\%	78	49.6\%	335	15.6\%	146
203	198.4	Hamilton	237.02	3	\$60,885	183	0.0\%	247	74.4\%	232	65.0\%	221	18.5\%	109
205	199.4	Hamilton	247	3	\$66,000	214	0.3\%	236	63.8\%	166	71.2\%	136	10.1\%	245
206	199.6	Dearborn	802.01	3	\$73,906	263	2.9\%	54	80.4\%	276	73.0\%	118	7.6\%	287
207	200.2	Campbell	524	3	\$59,904	176	0.0\%	247	82.3\%	289	72.2\%	126	14.9\%	163
208	200.8	Campbell	519.01	3	\$68,882	236	2.2\%	90	85.7\%	316	70.7\%	145	11.6\%	217
209	201.6	Hamilton	56	3	\$63,561	196	0.0\%	247	76.5\%	247	66.4\%	201	17.8\%	117
210	202	Kenton	637.01	3	\$61,932	187	0.0\%	247	78.0\%	263	70.1\%	152	14.9\%	161
211	202.6	Hamilton	210.03	3	\$74,464	265	0.7\%	197	54.3\%	129	67.8\%	179	10.3\%	243
211	202.6	Hamilton	254.01	3	\$56,326	156	0.0\%	247	77.9\%	260	64.6\%	223	17.0\%	127
213	202.8	Hamilton	237.01	3	\$66,905	227	0.0\%	247	71.1\%	219	68.7\%	170	15.4\%	151
214	203.4	Clermont	407.02	3	\$57,440	163	0.0\%	247	84.3\%	307	70.8\%	142	15.0\%	158
215	203.6	Kenton	636.04	3	\$65,243	207	0.0\%	247	63.0\%	161	74.6\%	99	6.5\%	304
216	204.6	Kenton	636.03	3	\$69,236	240	2.6\%	71	87.6\%	331	66.1\%	204	14.0\%	177
217	205.4	Campbell	520.01	3	\$80,111	287	1.6\%	121	85.4\%	314	73.8\%	111	12.8\%	194
217	205.4	Hamilton	230.01	3	\$67,500	231	0.9\%	169	71.0\%	218	67.0\%	189	11.6\%	220
219	207	Kenton	658	3	\$74,934	266	2.8\%	61	84.6\%	309	67.1\%	188	12.0\%	211
219	207	Clermont	410	3	\$75,298	269	0.7\%	199	78.9\%	270	68.1\%	175	17.6\%	122
221	207.6	Kenton	611	3	\$73,444	262	2.5\%	75	76.4\%	243	60.3\%	263	12.7\%	195
221	207.6	Clermont	419	3	\$67,168	229	0.0\%	247	87.6\%	330	77.5\%	75	15.1\%	157
223	207.8	Hamilton	221.02	3	\$66,290	220	2.7\%	63	68.8\%	200	62.8\%	237	6.1\%	319
224	208.2	Hamilton	57.02	3	\$57,256	161	0.0\%	247	41.2\%	81	57.7\%	288	8.9\%	264
225	209.4	Hamilton	207.01	3	\$60,078	177	0.7\%	187	72.9\%	229	66.3\%	203	9.8\%	251
226	210	Hamilton	214.01	3	\$71,134	246	2.0\%	98	88.1\%	337	69.3\%	160	12.1\%	209
226	210	Hamilton	214.22	3	\$71,417	250	0.0\%	247	60.5\%	149	70.1\%	151	9.6\%	253
228	210.4	Campbell	531	3	\$69,207	239	0.0\%	246	67.9\%	195	67.2\%	186	13.3\%	186
228	210.4	Clermont	415.02	3	\$65,421	210	0.0\%	247	69.9\%	211	66.5\%	197	13.2\%	187
230	211	Hamilton	236	3	\$66,066	215	0.4\%	230	66.7\%	185	67.0\%	193	11.0\%	232

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
231	212.6	Campbell	525	3	\$72,963	257	0.0\%	247	70.7\%	217	63.4\%	232	18.3\%	110
231	212.6	Hamilton	18	3	\$55,795	152	2.7\%	68	78.9\%	269	55.0\%	304	8.5\%	270
233	213	Kenton	668	3	\$78,125	278	1.7\%	118	67.6\%	191	60.2\%	265	11.8\%	213
234	214.2	Campbell	503	3	\$87,059	311	1.7\%	112	66.4\%	183	49.7\%	333	16.8\%	132
235	214.6	Hamilton	206.02	3	\$60,735	180	0.0\%	247	66.2\%	181	61.2\%	253	11.9\%	212
236	215	Hamilton	101	3	\$63,491	193	0.8\%	177	64.3\%	167	59.2\%	275	8.9\%	263
237	215.2	Kenton	643	3	\$62,969	191	2.3\%	83	81.1\%	281	65.3\%	215	6.5\%	306
238	215.4	Campbell	520.02	3	\$80,625	290	2.5\%	74	84.2\%	305	69.2\%	162	10.1\%	246
238	215.4	Warren	324	3	\$66,824	225	0.0\%	247	87.3\%	329	77.4\%	76	12.5\%	200
240	218.4	Hamilton	259	3	\$63,000	192	0.0\%	247	100.0\%	379	81.1\%	45	11.3\%	229
241	219.4	Clermont	411.03	3	\$70,515	244	0.5\%	217	66.9\%	186	61.9\%	246	12.4\%	204
241	219.4	Warren	307	3	\$67,419	230	0.0\%	247	72.8\%	228	68.1\%	173	11.6\%	219
243	220	Warren	310	3	\$72,204	254	0.6\%	212	69.3\%	206	65.2\%	218	12.1\%	210
244	220.2	Campbell	528	3	\$71,406	249	0.8\%	179	76.6\%	248	66.5\%	198	11.3\%	227
245	220.6	Hamilton	70	3	\$72,804	255	2.4\%	77	58.4\%	141	58.0\%	282	4.4\%	348
246	221.2	Hamilton	208.11	3	\$63,503	194	0.6\%	211	76.3\%	242	69.2\%	161	7.0\%	298
247	222.2	Boone	705.01	3	\$73,041	258	1.2\%	147	72.2\%	223	69.0\%	167	6.2\%	316
248	222.8	Hamilton	102.02	3	\$71,638	251	0.0\%	247	78.8\%	268	63.4\%	233	17.9\%	115
249	223	Clermont	413.03	3	\$79,397	283	1.5\%	130	82.8\%	295	63.9\%	226	13.9\%	181
250	224.6	Hamilton	207.61	3	\$63,609	197	0.0\%	247	69.0\%	203	60.0\%	270	12.2\%	206
251	225.6	Dearborn	802.02	3	\$69,517	241	0.7\%	182	84.4\%	308	71.6\%	131	8.8\%	266
252	226.2	Hamilton	6	3	\$48,000	106	6.2\%	17	77.4\%	257	29.3\%	380	2.8\%	371
253	227	Warren	311	3	\$86,452	309	1.1\%	157	87.6\%	332	71.0\%	139	12.6\%	198
254	227.2	Kenton	636.05	3	\$66,270	219	0.6\%	204	81.1\%	282	65.7\%	210	11.6\%	221
255	228.4	Campbell	522	3	\$60,536	178	0.0\%	247	76.7\%	249	66.5\%	200	8.7\%	268
256	229	Hamilton	210.02	3	\$66,944	228	0.0\%	247	81.2\%	283	70.6\%	147	10.4\%	240
257	229.2	Clermont	412	3	\$65,903	213	2.0\%	99	83.6\%	302	60.5\%	260	8.3\%	272
258	229.4	Clermont	414.04	3	\$65,509	211	0.0\%	247	67.9\%	194	58.2\%	281	11.8\%	214
259	229.8	Hamilton	205.04	3	\$83,676	301	2.4\%	80	78.6\%	267	63.9\%	227	8.2\%	274

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
260	231	Hamilton	243.03	3	\$81,048	291	0.7\%	185	68.8\%	201	63.7\%	229	9.9\%	249
261	231.4	Hamilton	20	3	\$83,393	299	2.7\%	66	53.8\%	125	49.7\%	334	4.9\%	333
262	231.8	Kenton	652	3	\$71,196	247	1.3\%	140	67.9\%	193	49.8\%	331	10.0\%	248
263	232.4	Hamilton	213.03	3	\$80,558	289	1.2\%	151	67.4\%	189	65.1\%	219	6.2\%	314
263	232.4	Hamilton	222	3	\$75,893	273	1.3\%	139	74.5\%	234	61.3\%	251	8.8\%	265
265	233.8	Hamilton	235.22	3	\$73,235	261	0.6\%	205	67.3\%	188	58.3\%	280	10.9\%	235
265	233.8	Warren	319.04	3	\$75,357	270	1.2\%	149	78.2\%	265	66.9\%	195	7.3\%	290
267	234.4	Hamilton	57.01	3	\$57,917	165	0.0\%	247	52.7\%	120	50.3\%	325	6.2\%	315
268	238.8	Hamilton	226.02	3	\$85,250	306	2.3\%	87	62.4\%	156	60.2\%	268	1.8\%	377
269	239.2	Hamilton	46.03	3	\$59,115	171	0.7\%	183	82.3\%	290	60.2\%	267	7.7\%	285
270	239.6	Boone	703.08	3	\$71,960	252	0.4\%	233	70.4\%	216	64.5\%	224	8.2\%	273
270	239.6	Clermont	411.01	3	\$74,222	264	0.4\%	223	83.2\%	296	67.3\%	184	11.1\%	231
272	240.2	Campbell	519.03	3	\$83,696	302	0.9\%	165	86.7\%	327	69.1\%	165	10.3\%	242
273	240.4	Hamilton	215.01	3	\$73,108	259	0.0\%	247	69.8\%	207	63.4\%	234	9.6\%	255
274	241.4	Campbell	529	3	\$85,904	308	0.6\%	201	78.1\%	264	63.1\%	235	12.6\%	199
275	241.6	Hamilton	7	3	\$91,484	327	1.1\%	158	100.0\%	379	57.0\%	293	25.8\%	51
276	245.2	Warren	313	3	\$81,048	291	0.6\%	202	59.4\%	144	58.0\%	284	6.5\%	305
277	246	Kenton	641	3	\$86,667	310	3.5\%	42	86.0\%	321	59.4\%	274	7.8\%	283
277	246	Hamilton	204.02	3	\$85,759	307	0.4\%	232	84.2\%	306	68.0\%	177	12.2\%	208
279	247.4	Campbell	526	3	\$66,700	222	0.0\%	247	100.0\%	379	74.0\%	109	7.9\%	280
279	247.4	Hamilton	72	3	\$61,250	185	0.0\%	247	73.9\%	231	49.3\%	336	10.4\%	238
281	247.8	Hamilton	242	3	\$105,536	351	1.4\%	132	77.1\%	252	49.8\%	332	14.1\%	172
282	248.8	Kenton	649	3	\$83,438	300	0.0\%	247	48.5\%	110	54.3\%	308	8.0\%	279
283	249.6	Warren	320.03	3	\$83,197	298	1.2\%	145	60.0\%	147	52.0\%	318	4.7\%	340
284	249.8	Kenton	653	3	\$71,299	248	1.5\%	125	90.7\%	355	62.1\%	244	8.0\%	277
285	250.4	Hamilton	220	3	\$70,066	243	0.0\%	247	75.8\%	240	65.7\%	211	6.4\%	311
286	250.8	Clermont	414.01	3	\$79,753	285	0.8\%	172	72.9\%	230	57.8\%	286	7.9\%	281
287	251.8	Hamilton	230.02	3	\$70,886	245	0.0\%	247	70.1\%	213	57.9\%	285	8.5\%	269
288	254.8	Hamilton	213.04	3	\$69,167	237	0.0\%	247	90.9\%	357	71.0\%	138	7.1\%	295

	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { む } \\ & \text { O } \\ & \text { む } \\ & \text { U } \end{aligned}$			$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { In } \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			$$				$\begin{gathered} \text { E} \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ש } \\ & \text { O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { n } \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { 트 } \\ & \text { "ี̈ } \\ & \text { 艺 } \end{aligned}$	$$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
$$	$\begin{aligned} & \infty \\ & 0 \\ & \stackrel{0}{n} \end{aligned}$	N	ㅅN	$\begin{aligned} & \mathrm{a} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & 6 \\ & \stackrel{0}{1} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{3} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{1} \\ & \underset{\sim}{\circ} \end{aligned}$		$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \dot{0} \\ & N \end{aligned}$	$\begin{aligned} & \infty \\ & 0_{0} \\ & 0_{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\cap}{N}$	$\stackrel{\wedge}{N}$	$\begin{aligned} & 0 \\ & 0 \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \infty \\ & \underset{N}{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \text { 认े } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { H} \\ & \text { B } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { H} \\ & \dot{0} \\ & \text { N} \end{aligned}$	$\underset{N}{N}$	$\begin{aligned} & N \\ & \underset{N}{N} \\ & \end{aligned}$	へ
$\underset{\sim}{\infty}$	$\stackrel{\rightharpoonup}{\mathrm{N}} \mathrm{~N}$	$\underset{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{N}{N}$	$\begin{aligned} & \text { H } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { NoN } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{aligned} & \text { ö } \\ & \text { N } \end{aligned}$	oㅇ	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\begin{gathered} \text { No } \\ \text { en } \end{gathered}$	$\begin{aligned} & \text { N } \\ & \text { Nे } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { M } \end{aligned}$	in	$\begin{aligned} & \text { no } \\ & \text { M } \end{aligned}$	人̀	$$	oे	$\stackrel{0}{1}$	$\stackrel{-}{m}$	$\stackrel{N}{n}$	$\stackrel{m}{m}$	$\stackrel{m}{m}$	$\stackrel{10}{\mathrm{~m}}$	$\begin{aligned} & 0 \\ & m \end{aligned}$	－

\simeq		$\stackrel{\llcorner }{\underset{\sim}{N}}$	+	$\begin{aligned} & \hline \mathbf{N} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\circ}{\mathrm{m}}$	$\begin{array}{\|l\|} \hline \infty \\ \stackrel{n}{1} \\ \hline \end{array}$	$\begin{array}{\|c} N \\ \underset{N}{\infty} \end{array}$	$\begin{aligned} & 0 \\ & m \\ & m \end{aligned}$	$\begin{aligned} & \text { n } \\ & \mathrm{m} \\ & \hline \end{aligned}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{N}{N}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\begin{array}{\|l\|} \hline N \\ \vdots \\ N \end{array}$	$\begin{aligned} & \hline \infty \\ & \underset{m}{\infty} \end{aligned}$	$\stackrel{N}{N}$	$\begin{aligned} & \text { n } \\ & \underset{N}{\prime} \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { en } \end{aligned}$	$$	$$	$\begin{aligned} & \mathbf{N} \\ & \underset{\sim}{N} \end{aligned}$	$$	$\stackrel{\infty}{\underset{\sim}{2}}$	$\begin{aligned} & \mathfrak{a} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & - \\ & \underset{N}{\prime} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{m}{2} \end{aligned}$	$\underset{\sim}{\mathrm{m}}$	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{\circ}{\circ}$	$\underset{\mathrm{m}}{\hat{N}}$	$\stackrel{\square}{\sim}$
	$\begin{aligned} & \text { 줄 } \\ & \underline{\underline{I}} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { ị̣ } \\ & \stackrel{n}{n} \end{aligned}$	$\stackrel{+}{\underset{+}{+}}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{L}} \\ & \stackrel{1}{-} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \dot{1} \\ & \text { ni } \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { à } \\ & \underset{\infty}{n} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \stackrel{+}{\infty} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \dot{+} \\ & \infty \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\rightharpoonup}{+} \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \infty \\ & 1 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{2}_{+}^{+} \\ & \underset{\infty}{1} \end{aligned}$	$\begin{aligned} & \text { Ô} \\ & \text { Ǹ } \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{\alpha} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & \dot{0} \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{1} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \vec{o} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \dot{N} \\ & \stackrel{N}{\wedge} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \underset{\sim}{i} \\ & \infty \end{aligned}$	$\begin{gathered} \circ \\ 0 \\ \infty \\ \infty \end{gathered}$		$\begin{gathered} \circ \\ 0 \\ 0 \\ \infty \\ \infty \end{gathered}$	$\begin{aligned} & \text { oి } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{2}{2} \end{aligned}$
	$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \text { Ǹ } \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\sim}{\sim}$	$\underset{\underset{\sim}{N}}{+}$	$\underset{\sim}{\underset{N}{N}}$	$\underset{\sim}{\underset{\sim}{N}}$	$\underset{\sim}{i}$	$\underset{\mathrm{N}}{\mathrm{H}}$	$\underset{\sim}{\mathrm{N}}$	$\underset{\sim}{\underset{N}{N}}$	$\underset{\sim}{\mathrm{N}}$	$\underset{\sim}{\mathrm{N}}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\underset{\text { N }}{\underset{\sim}{N}}$	$\underset{\sim}{\sigma}$	$\underset{\text { N }}{\underset{\sim}{2}}$	$\underset{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\hat{O}}{\mathrm{~N}}$	$\begin{aligned} & a \\ & \stackrel{a}{n} \end{aligned}$	$\underset{\text { N }}{\underset{\sim}{N}}$	$\begin{aligned} & \stackrel{0}{N} \\ & \underset{N}{2} \end{aligned}$	$\underset{\sim}{7}$	$\stackrel{\underset{\sim}{*}}{N}$	$\stackrel{\llcorner }{\sim}$	$\stackrel{\circ}{\circ}$	$\underset{\sim}{\mathrm{N}}$	안	N
$\underset{\sim}{200}$		ò	$\begin{aligned} & \text { ơ } \\ & \stackrel{?}{4} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { 犬゚ } \\ & \text { O} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \underset{i}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & 0 \\ & 0 \end{aligned}$	oo	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { oे } \\ & 0 \\ & 0 \end{aligned}$	ò	$\begin{aligned} & \text { ৯} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { i? } \end{aligned}$	ò	$\begin{aligned} & 0 \\ & \dot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hat{0} \end{aligned}$	$\begin{aligned} & \text { oి } \\ & \text { O. } \end{aligned}$	$\begin{aligned} & 0 \\ & \hat{0} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & 0 . \end{aligned}$
		$\begin{aligned} & \text { H } \\ & \text { n } \end{aligned}$	$\underset{\sim}{\mathrm{m}}$	$\stackrel{N}{N}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{\|l\|} \hline \infty \\ \underset{N}{\infty} \end{array}$	$\underset{\text { M }}{\text { H }}$	$\begin{aligned} & \text { M } \\ & \text { N } \\ & N \end{aligned}$	$\begin{aligned} & m \\ & m \end{aligned}$	$\begin{aligned} & m \\ & e \\ & \hline \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { m } \end{aligned}$	$\underset{m}{n}$	$\begin{aligned} & \text { in } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & 10 \\ & m \end{aligned}$	$\frac{g}{m}$	$\begin{aligned} & \text { + } \\ & \text { N } \end{aligned}$	$\stackrel{m}{\mathrm{~m}}$	ホ	$\begin{aligned} & \text { H } \\ & \text { N } \end{aligned}$	$$	$\underset{m}{7}$	$\begin{aligned} & \text { n } \\ & \mathrm{m} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \end{aligned}$	$\underset{\mathrm{m}}{\mathrm{~F}}$	$\begin{aligned} & \text { oq } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{1}{m} \end{aligned}$	$\stackrel{\sim}{\sim}$
	$\begin{gathered} \text { © } \\ \text { 등 } \end{gathered}$	$\begin{aligned} & \underset{-}{-1} \\ & \infty \\ & n_{1} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { H } \\ & 0 \\ & \hat{N} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { N } \\ & \sim \\ & \\ & \underset{\sim}{2} \end{aligned}$	$$		$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\infty} \\ & \infty \end{aligned}$				$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & 0 \\ & \stackrel{i}{n} \\ & \infty \\ & \infty \\ & \infty \\ & \rightarrow \end{aligned}$	$\begin{aligned} & 10 \\ & n_{0} \\ & 0^{2} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \underset{N}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \underset{\sim}{n} \end{gathered}$		$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{n} \\ & \hat{\sim} \\ & \underset{\sim}{n} \end{aligned}$	- ∞ ∞ ∞ ∞	$$		$\begin{aligned} & \hat{N} \\ & \mathbf{M} \\ & \alpha \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & N \\ & N \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$
		－	＋	－	＋	－	ャ	－	＋	－	＋	－	＋	－	＋	＋	＋	－	＋	－	＋	ナ	T	＋	＋	＋	－	－	＋	＋
		$\begin{aligned} & n \\ & 0 \\ & \dot{n} \\ & \text { en } \end{aligned}$	ơ	犬	$\left\|\begin{array}{l} \mathrm{N} \\ 0 \\ 0 \\ 0 \\ \mathrm{~N} \end{array}\right\|$	$\underset{\sim}{\sim}$	$\begin{aligned} & -2 \\ & \dot{Y} \\ & \underset{子}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { O} \\ & \text { m } \end{aligned}$	$\left\|\begin{array}{c} \mathrm{N} \\ \hat{0} \\ \mathrm{o} \\ \mathrm{~N} \end{array}\right\|$	$\begin{aligned} & \text { N} \\ & 0 \\ & \dot{O} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { in } \end{aligned}$	앙	$\begin{aligned} & 9 \\ & 0 \\ & \dot{m} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{i} \\ & \dot{8} \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{j} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & \underset{0}{0} \\ & \dot{甘} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \underset{-}{0} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \\ & \mathrm{~N} \end{aligned}$	$\begin{gathered} 5 \\ 0 \\ \dot{B} \\ \stackrel{n}{n} \end{gathered}$	$\begin{aligned} & \underset{0}{0} \\ & \dot{0} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \stackrel{1}{2} \\ & \underset{7}{2} \end{aligned}$	$\underset{\sim}{~}$	$\frac{m}{n}$	$\begin{aligned} & \text { n} \\ & 0 \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\mathrm{~N}} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\underset{N}{N}}$	\cdots	$\stackrel{\leftrightarrow}{4}$	N \sim ∞ \sim \sim

ح ご 0			$\begin{gathered} \text { II } \\ 0 \\ 0 \\ 0 \\ \cline { 1 - 1 } \end{gathered}$	$\begin{gathered} \tilde{0} \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$								E E © 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$						$\begin{gathered} \tilde{0} \\ \frac{0}{3} \\ \hdashline \\ \frac{\pi}{I} \\ \frac{1}{2} \end{gathered}$		$\begin{gathered} \stackrel{\rightharpoonup}{u} \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{gathered}$		$\begin{gathered} \overline{0} \\ \stackrel{0}{2} \\ \stackrel{\rightharpoonup}{\Xi} \\ \underset{U}{0} \end{gathered}$	$$		$$				
짐	$\begin{aligned} & \underset{\mathbf{x}}{\mathbf{O}} \\ & \underline{\underline{C}} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \text { © } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { i } \\ & \text { on } \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{N}_{1} \\ & \infty \\ & N \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & H \\ & \underset{\sim}{0} \\ & \underset{N}{0} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{2} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \underset{i}{3} \\ & \dot{\alpha} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & \text { + } \\ & \text { - } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{\alpha} \\ & \underset{N}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{N} \\ \underset{\mathrm{~N}}{ } \\ \text { Nे } \end{gathered}\right.$	$\begin{aligned} & \text { o } \\ & \text { i } \\ & \text { N } \end{aligned}$	$\begin{array}{\|c\|} \hline \dot{+} \\ \dot{\mu} \\ \stackrel{N}{N} \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \underset{N}{n} \end{aligned}$	$\begin{array}{\|c\|} \hline \underset{~}{+} \\ \infty \\ \underset{N}{2} \end{array}$	$\begin{aligned} & \underset{+}{\infty} \\ & \infty \\ & \underset{N}{\infty} \end{aligned}$	$\left\|\begin{array}{c\|} \hline \\ \infty \\ \infty \\ \underset{N}{2} \end{array}\right\|$	$\begin{aligned} & \hline \\ & 0 \\ & 0 \\ & \underset{N}{0} \end{aligned}$	$\stackrel{\text { g }}{N}$	$\begin{aligned} & \underset{\sim}{*} \\ & \underset{\sim}{2} \\ & \underset{N}{2} \end{aligned}$	$\begin{array}{r} -1 \\ \mathrm{~m} \end{array}$	$\begin{array}{\|c\|} \hline \text { N } \\ \text { ion } \\ \text { ì } \end{array}$	$\begin{aligned} & \text { H } \\ & \text { i } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \infty \\ & \text { i } \\ & \text { ì } \\ & \text { en } \end{aligned}$
出	$\begin{aligned} & \underset{\underset{\sim}{c}}{\stackrel{y}{x}} \end{aligned}$	$\stackrel{\infty}{m}$	$\frac{a}{m}$	$\stackrel{\rightharpoonup}{m}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$\underset{\sim}{\underset{\sim}{N}}$	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & \stackrel{0}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{N}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\underset{\sim}{N}}{\mathbf{N}}$	M	$\stackrel{\rightharpoonup}{\mathrm{m}}$	$\underset{m}{\mathbf{m}}$	$\underset{m}{m}$	$\underset{\sim}{\underset{m}{2}}$	$\left\|\begin{array}{l} \mathrm{n} \\ \mathrm{~m} \end{array}\right\|$	$\begin{aligned} & \hline \mathbf{m} \\ & \mathbf{m} \end{aligned}$	$\underset{\mathrm{m}}{\hat{m}}$	$\stackrel{N}{\mathrm{~m}}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{m} \\ & m \end{aligned}\right.$	$\begin{aligned} & \mathbf{o} \\ & \underset{m}{2} \end{aligned}$	$\underset{\mathrm{m}}{\underset{\sim}{2}}$	$\begin{array}{\|c} \underset{\sim}{\mathrm{N}} \end{array}$	$\underset{m}{\underset{m}{2}}$	$\begin{aligned} & \underset{\mathrm{m}}{2} \end{aligned}$	$\stackrel{\substack{\mathrm{L} \\ \mathrm{~m}}}{ }$	$\begin{aligned} & \mathbf{0} \\ & \text { + } \\ & \hline \end{aligned}$

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
347	303.2	Hamilton	251.03	4	\$98,665	342	0.5\%	218	85.9\%	319	53.9\%	311	5.3\%	326
348	304.8	Hamilton	213.02	4	\$97,119	339	0.0\%	247	89.1\%	344	60.7\%	257	4.8\%	337
349	305	Hamilton	211.02	4	\$91,614	328	0.0\%	247	91.0\%	358	62.8\%	238	4.0\%	354
350	305.6	Hamilton	211.01	4	\$89,552	324	0.0\%	247	91.6\%	360	59.8\%	272	5.4\%	325
351	307	Warren	319.02	4	\$99,400	345	0.7\%	189	84.8\%	311	52.2\%	317	2.5\%	373
352	307.2	Warren	322.01	4	\$89,561	325	0.0\%	247	87.8\%	334	54.6\%	307	5.4\%	323
353	310.6	Hamilton	241	4	\$87,473	314	0.0\%	247	84.0\%	303	46.4\%	347	4.5\%	342
354	313.2	Hamilton	243.21	4	\$107,692	355	0.4\%	227	84.7\%	310	48.1\%	343	4.9\%	331
355	313.6	Warren	320.04	4	\$112,361	360	0.8\%	178	90.0\%	352	43.4\%	361	6.1\%	317
356	316	Hamilton	71	4	\$113,333	361	0.0\%	247	83.6\%	300	35.4\%	375	7.0\%	297
357	316.6	Hamilton	13	4	\$108,618	356	0.0\%	247	86.4\%	322	58.5\%	278	1.2\%	380
358	318.8	Kenton	655.02	4	\$87,131	312	0.0\%	247	88.8\%	341	45.5\%	351	4.5\%	343
359	322.2	Campbell	523.02	4	\$104,167	350	0.0\%	247	85.4\%	313	50.0\%	329	2.7\%	372
360	322.4	Hamilton	249.02	4	\$114,114	365	0.3\%	234	86.5\%	325	45.1\%	353	4.9\%	335
361	322.8	Hamilton	47.01	4	\$113,333	361	0.0\%	247	83.5\%	299	39.5\%	369	4.7\%	338
361	322.8	Hamilton	239.02	4	\$132,500	375	0.0\%	247	89.0\%	343	44.0\%	360	7.4\%	289
363	323.2	Hamilton	233	4	\$126,094	373	1.7\%	115	98.4\%	378	29.0\%	381	3.0\%	369
364	324.6	Warren	305.04	4	\$114,069	364	0.0\%	247	95.3\%	375	48.2\%	341	7.0\%	296
365	325.4	Kenton	655.01	4	\$93,095	332	0.0\%	247	92.1\%	362	53.7\%	312	2.5\%	374
366	327.8	Hamilton	207.07	4	\$99,167	343	0.3\%	238	93.7\%	371	50.2\%	327	3.6\%	360
367	329.4	Warren	309	4	\$121,792	371	0.7\%	195	90.4\%	353	43.2\%	362	3.1\%	366
368	332.6	Hamilton	51	4	\$115,852	368	0.0\%	247	83.3\%	297	42.8\%	365	0.0\%	386
369	333.2	Hamilton	231	4	\$111,250	359	0.0\%	247	93.9\%	373	49.1\%	338	4.4\%	349
370	334.2	Clermont	403	4	\$121,101	370	0.3\%	240	89.2\%	347	45.5\%	349	3.1\%	365
371	336.6	Hamilton	248	4	\$114,167	366	0.0\%	247	89.1\%	345	39.1\%	370	4.0\%	355
372	337.6	Hamilton	226.01	4	\$114,316	367	0.0\%	247	87.7\%	333	36.9\%	373	3.1\%	368
373	338.2	Hamilton	49	4	\$132,647	376	0.0\%	247	85.6\%	315	39.0\%	371	0.4\%	382
374	338.4	Hamilton	243.22	4	\$142,184	377	0.6\%	213	92.4\%	366	38.6\%	372	3.3\%	364
375	338.6	Hamilton	235.01	4	\$125,840	372	0.0\%	247	92.3\%	365	34.0\%	377	4.9\%	332

SES INDEX AND VARIABLES FOR CINCINNATI METROPOLITAN AREA CENSUS TRACTS, 2005-2009

SES Index		County	Census Tract		Family Income		Crowding		Family Structure		Occupation		Education	
Rank	Index		Number	Quartile	Index	Rank								
376	339	Hamilton	48	4	\$166,087	380	0.7\%	194	90.9\%	356	27.8\%	382	0.4\%	383
377	340	Hamilton	251.01	4	\$113,839	363	0.0\%	247	92.3\%	364	44.7\%	356	2.8\%	370
378	340.6	Hamilton	212.01	4	\$116,453	369	0.0\%	247	93.9\%	372	45.0\%	354	3.5\%	361
379	340.8	Hamilton	245	4	\$150,000	378	0.3\%	237	89.2\%	346	44.2\%	359	0.2\%	384
380	343.8	Warren	319.03	4	\$128,324	374	0.3\%	239	92.2\%	363	40.9\%	368	2.5\%	375
381	346.4	Hamilton	50	4	\$105,625	352	0.0\%	247	95.6\%	376	33.8\%	378	1.6\%	379
382	347.2	Hamilton	244	4	\$227,042	383	0.5\%	220	94.2\%	374	35.9\%	374	0.2\%	385
383	347.8	Hamilton	251.04	4	\$206,500	381	0.0\%	247	89.9\%	351	33.1\%	379	0.7\%	381
$384{ }^{\text {a }}$	349.75 ${ }^{\text {a }}$	Hamilton	43	4	\$223,333	382	0.0\%	247	---c	---c	25.4\%	384	0.0\%	386
---b	---b	Hamilton	1	4	--- ${ }^{\text {c }}$	---c	--- ${ }^{\text {c }}$	---c	---¢	--- ${ }^{\text {c }}$	---c	---c	31.1\%	33
---b	---b	Hamilton	62.02	4	---c	---c	--- ${ }^{\text {c }}$	---c	---c	--- ${ }^{\text {c }}$	--- ${ }^{\text {c }}$	---c	21.6\%	76
---b	---b	Warren	317	4	--c	---c	-c	---c	${ }^{\text {c }}$	-c	---c	--- ${ }^{\text {c }}$	37.9\%	14
${ }^{\text {a }}$ SES Index Value calculated for Census tract 43 of Hamilton County (rank value: 384), despite lacking data for one of the five indicator values														
${ }^{\text {b }}$ SES Index Value not calculated due to lack of data for four of the five indicator values														
${ }^{\text {c }}$ Data not available														

Variables as Labeled in the Tables	ACS 2005-2009 Variables Used
African American Families Below Poverty - African American or Black head of households with income at or below poverty level compared to total number families with a Black or African American householder	B17010B
Crowding Index - Percent of occupied housing units with more than 1 person per room	B25014
Education Index - Percent of population 25 years or older with less education than a high school diploma	B15002
Family Structure Index - Percent of children living in married-couple families	B09005
Female Headed Families - The number of females responsible for households with families	B17010
Female Headed Families Below Poverty - Female headed households (no husband present) with income at or below poverty status over total number of families	B17010
Functional Illiteracy Rate - Percent of adults over 25 years of age with 8 or less years of education	B15002
High School Drop-out Rate - Percent of persons 16-19 years old not enrolled in school and without a high school diploma	B14005
Households on Public Assistance - Percent of households with public assistance income	B19057
Jobless Rate - Percent of population that is either unemployed or under 65 years of age and not in the civilian labor force	B23001
Less Than HS Diploma - Persons 25 years and older without a high school diploma	B15002
Median Family Income (individual census tract figures) - Median annual family income in 2009 inflation-adjusted dollars	B19113
Median Family Income (when calculated for neighborhoods - i.e. groups of census tracts) Calculated with individual incomes of families in neighborhoods (which are provided in ranges by tract in table B19101). This controls for bias resulting from varying numbers of families within different tracts that are in the same neighborhood. For example: if a neighborhood is composed of two tracts, one with many families and one with just a few, this adjusted statistic takes this difference into account, and produces a more accurate median.	B19113; B19101
Occupation Index - Percent of workers not employed in management, professional, and related occupations (i.e. semi-skilled and unskilled workers) compared to all employed persons 16 years and older	C24010
Percent African American Population - Percent of population who self-identify as Black or African American	C02003
Percent of Families Below Poverty - Percent of families with annual income at or below the poverty level. Poverty statistics were based on the standards used by federal agencies. These standards take into account varying family sizes, types, and are revised anually to allow for changes in the cost of living as reflected in the consumer price index. In the case of the 20052009 ACS, poverty levels are also adjusted for inflation, as the ACS data was collected between 2005 to 2009.	B17010
Percent of First Generation Immigrants - Percent of population that is a foreign born, naturalized U.S. citizen	B05002
Percent of Households Below Poverty - Percent of households with annual income at or below the poverty level	B17017
Percent Single Family Dwellings - Percent of living quarters with one unit	B25024
Percent White or Other Population - Percent of population who self-identify as White or another race	C02003

DEFINITION OF VARIABLES	
Variables as Labeled in the Tables	ACS 2005-2009 Variables Used
Socioeconomic Status (SES) Index - A composite scale developed from comparative ranking of five variables. These variables were the five dimensions used by the census bureau in the New Haven Study: median family income, occupational status, educational attainment, hous- ing volume, and family structure. The relative rank for each census tract was determined and then the average of these five variables made the SES index number for the tract.	B25014; B15002; C24090; B19113;
Total Families - Total number of families living in a given census tract	B17010
Total Housing Units - Number of separate living quarters in a given census tract, such as houses, apartments, mobile homes, or trailers. Separate living quarters are those in which oc- cupants live and eat seperately from any other persons in the building and which have direct access from outside the building or through a common hall. If quarters contain nine or more persons unrelated to the householder, it is classified as group quarters	B25024
Total Population - Total number of persons living in a given census tract	B01003
Unemployment Rate - Percent of unemployed persons in the civilian labor force	B23001
White Families Below Poverty - White head of households with income at or below poverty level compared to total number of families with a White householder	B17010A

Appendix VI

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
1	17.2	Hamilton	77	1	96.7\%	3	41.8\%	11	4.0\%	42	8.4\%	18	\$15,732	12
2	18.4	Hamilton	2	1	94.5\%	4	34.1\%	28	8.2\%	9	2.6\%	13	\$28,654	38
3	20.8	Kenton	671	1	89.3\%	15	29.0\%	55	10.7\%	4	10.0\%	20	\$14,512	10
4	22	Butler	4	1	93.8\%	6	45.5\%	7	11.1\%	2	35.2\%	78	\$19,985	17
5	29.2	Campbell	501	1	83.7\%	39	37.5\%	19	4.7\%	30	25.7\%	42	\$19,398	16
6	33.6	Hamilton	36	1	90.8\%	9	41.1\%	12	3.4\%	52	34.7\%	76	\$22,125	19
7	35.4	Hamilton	88	1	89.3\%	14	31.1\%	45	6.3\%	17	31.5\%	60	\$28,964	41
8	35.6	Hamilton	98	1	90.1\%	10	32.5\%	35	7.5\%	12	41.1\%	92	\$26,378	29
9	36	Campbell	505	1	81.7\%	57	40.5\%	13	5.0\%	28	29.2\%	54	\$26,304	28
10	38.2	Butler	140	1	89.9\%	12	33.5\%	31	3.4\%	53	31.6\%	63	\$27,022	32
11	40.2	Butler	6	1	85.8\%	27	33.9\%	29	5.0\%	26	27.1\%	47	\$37,452	72
12	42	Hamilton	95	1	84.8\%	33	34.8\%	25	5.7\%	22	36.6\%	79	\$31,731	51
13	42.8	Hamilton	94	1	77.8\%	106	31.0\%	47	16.9\%	1	24.4\%	39	\$22,788	21
14	44.2	Hamilton	92	1	85.2\%	31	42.1\%	10	9.7\%	7	48.4\%	128	\$30,333	45
15	45.4	Hamilton	21	1	81.0\%	67	31.1\%	44	10.9\%	3	0.0\%	1	\$44,583	112
16	47.4	Hamilton	87	1	92.1\%	7	47.5\%	5	9.9\%	5	49.5\%	132	\$41,161	88
17	48	Hamilton	67	1	88.1\%	19	17.7\%	165	7.0\%	13	19.4\%	30	\$15,938	13
18	51.8	Hamilton	85.02	1	70.2\%	211	33.2\%	33	7.5\%	11	0.0\%	1	\$7,459	3
19	54.8	Hamilton	85.01	1	76.8\%	120	24.4\%	83	5.9\%	20	13.1\%	21	\$26,514	30
20	57.6	Hamilton	28	1	84.2\%	37	44.4\%	8	4.3\%	35	54.2\%	154	\$32,733	54
21	59.2	Butler	5	1	89.8\%	13	33.5\%	32	2.0\%	126	33.3\%	66	\$34,154	59
22	61	Butler	8	1	99.1\%	2	24.6\%	79	3.0\%	64	45.7\%	113	\$30,417	47
23	65.6	Hamilton	110	1	86.1\%	24	29.7\%	51	4.4\%	33	49.6\%	133	\$41,090	87
24	66.4	Hamilton	93	1	77.3\%	111	25.6\%	67	5.7\%	21	33.3\%	67	\$35,889	66
25	67.4	Hamilton	16	1	73.3\%	167	45.8\%	6	7.8\%	10	53.8\%	150	\$8,725	4
26	67.8	Hamilton	104	1	78.3\%	99	22.7\%	91	2.9\%	67	15.8\%	25	\$33,625	57
27	69.8	Hamilton	35	1	93.9\%	5	39.7\%	14	0.0\%	315	0.0\%	1	\$16,203	14

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
28	70.4	Hamilton	262	1	91.6\%	8	19.6\%	138	9.8\%	6	52.0\%	142	\$33,750	58
29	72	Hamilton	39	1	81.5\%	61	19.8\%	135	2.9\%	69	20.0\%	31	\$35,500	64
30	73.2	Kenton	650	1	85.6\%	28	20.4\%	127	4.2\%	38	44.1\%	105	\$36,629	68
31	74.6	Butler	105	1	85.6\%	30	32.2\%	38	2.7\%	79	48.3\%	127	\$42,955	99
32	75.2	Hamilton	257	1	82.6\%	46	37.3\%	20	1.6\%	158	26.3\%	44	\$43,963	108
33	78.2	Hamilton	3.01	1	63.6\%	306	38.6\%	16	3.0\%	60	0.0\%	1	\$12,981	8
34	81.4	Hamilton	228	1	83.3\%	41	29.4\%	52	2.6\%	85	37.6\%	83	\$48,958	146
35	82.4	Butler	131	1	85.9\%	25	28.2\%	56	1.0\%	207	39.6\%	90	\$27,157	34
36	85.4	Hamilton	68	1	85.9\%	26	32.4\%	37	0.0\%	315	15.9\%	26	\$24,092	23
37	86.6	Hamilton	97	1	79.6\%	78	23.8\%	87	1.3\%	181	21.2\%	35	\$31,996	52
38	87.2	Hamilton	61	1	77.1\%	118	22.8\%	90	4.3\%	37	45.6\%	112	\$39,798	79
39	88.2	Butler	7.01	1	100.0\%	1	58.6\%	1	0.0\%	315	0.0\%	1	\$46,000	123
40	89.2	Hamilton	96	1	68.1\%	240	34.5\%	26	2.7\%	77	16.7\%	27	\$38,607	76
41	90.4	Butler	141	1	88.1\%	18	27.7\%	59	2.4\%	98	38.7\%	88	\$53,750	189
42	90.8	Hamilton	47.02	1	75.2\%	140	56.9\%	2	2.4\%	96	46.7\%	122	\$42,031	94
43	91.8	Campbell	512	1	88.6\%	16	31.1\%	46	0.0\%	315	27.4\%	49	\$27,061	33
44	92.8	Hamilton	73	1	78.0\%	101	21.3\%	111	2.0\%	120	22.5\%	37	\$42,173	95
46	93	Hamilton	103	1	83.4\%	40	49.9\%	3	0.0\%	315	37.1\%	80	\$26,250	27
44	92.8	Hamilton	37	1	68.1\%	242	35.6\%	23	1.4\%	171	6.8\%	17	\$14,904	11
47	93.6	Hamilton	15	1	78.5\%	93	29.8\%	50	0.0\%	315	0.0\%	1	\$14,327	9
48	93.8	Hamilton	64	1	77.5\%	107	20.9\%	117	1.9\%	131	31.0\%	58	\$33,050	56
49	94	Hamilton	227	1	78.4\%	95	29.1\%	54	0.9\%	215	31.6\%	62	\$29,855	44
50	94.8	Butler	3	1	86.7\%	22	25.2\%	72	0.8\%	236	31.8\%	64	\$40,139	80
51	100.4	Kenton	612	1	78.4\%	96	27.7\%	58	2.3\%	105	41.6\%	95	\$49,083	148
52	101	Butler	122	1	84.0\%	38	35.6\%	22	5.0\%	27	71.9\%	278	\$48,227	140
52	101	Hamilton	86.01	1	80.3\%	73	39.4\%	15	0.0\%	315	28.8\%	52	\$31,176	50
52	101	Hamilton	223.01	1	84.4\%	35	22.6\%	92	3.3\%	54	62.4\%	196	\$46,918	128
55	102	Kenton	651	1	69.5\%	222	25.2\%	73	2.3\%	109	30.0\%	57	\$30,911	49
56	102.6	Hamilton	80	1	75.3\%	138	31.7\%	40	0.0\%	315	4.3\%	14	\$10,135	6

2005－2009 | Family Structure | | Family Income |
| :--- | :--- | :--- |

 o n $\stackrel{m}{*}$

 Education
$\stackrel{\times}{\text { 즐 }}$

 uọ̣ednээO

Census Tract Number \quad Quartile

 －$\underset{\sim}{\wedge}$ $\stackrel{n}{n} \underset{\sim}{n}$

 ENSUS TRACTS，

SL	6SE＇8E\＄	Z2	\％ $8^{\circ} \mathrm{E}$ I	87	\％L＇ \mathcal{L}	67	\％ع＇0を	LIt	\％L＇IS	I	EZ	uOł！！	LZI	$\square 8$
SZI	0Sと＇9も\＄	L0Z	\％${ }^{\text {¢ }}$ ¢9	62	\％L＇も	69I	\％も゙	28	\％も゙6L	I	L0．8IL	Јəpng	Z＇IZI	S8
L6	9とS＇Zも\＄	9ヵI	\％6．ZS	80I	\％どZ	カレ	\％I＇SZ	8LI	\％S＇ZL	I	9L56	uMoıg	9027	E8
S8I	S97＇ES\＄	もLZ	\％9＇ャ9	9I	\％ず9	عEI	\％002	IS	\％I＇Z8	I	60才	ұиошЈəЈ	8．6II	Z8
89I	L68＇05\＄	981	\％S＇L9	95	\％でと	L6	\％S＇ZZ	06	\％L＇8L	I	L086	ұиеı	が6LI	I8
0才	978＇8Z\＄	9I	\％L＇9	SIE	\％000	$\square \mathcal{L}$	\％I＇とを	06I	\％9＇IL	I	Z0S	IIəqdueว	6II	08
90I	L69＇\＆も\＄	90E	\％ガ9	S9	\％6＇Z	87	\％S＇0\＆	89	\％6．08	I	20E	иә．ıлеМ	9＇8LI	62
L9I	LSt＇0S\＄	LOL	\％0＇をカ	SI	\％S＇9	LZZ	\％でも	88	\％6．8L	I	カも9	иоұนәу	ず8IL	8L
$\square \subset I$	SLS＇Lも\＄	カL	\％でもを	0S	\％9＇ε	8\＆Z	\％6 ${ }^{\circ} \mathrm{E}$ I	± 6	\％ガ8L	I	60．SIZ	иоł！！	8LI	LL
\＆\dagger	96I＇6Z\＄	$\square 6$	\％S＇IT	8EL	\％L＇L	SZI	\％900	S8I	\％I＇ZL	I	609	иоұนәу	LII	91
\＆6	SZ0＇Zも\＄	69	\％L＇EE	96I	\％I＇L	9\＆I	\％L＇6I	68	\％8．8L	I	L0L	әu00g	9＊9IL	SL
86	Sも8＇Zも\＄	SZZ	\％て＇99	カI	\％L＇9	8LI	\％6．02	92I	\％ 5 ＇9	I	8Iも	ұนошЈəว	で9II	カL
ILI	てとも＇ゅも\＄	SカI	\％6＇ZS	08	\％L＇Z	S9	\％8．52	SLI	\％6＇ZL	I	SEI	ләцn＇	Z＇SIL	EL
78I	6LZ＇とS\＄	ZIZ	\％ガャ9	ちて	\％て＇S	60I	\％S＇LZ	Zヤ	\％でと8	I	ても゙ $20 Z$	иOף！！	でもLI	ZL
I	\＆もて＇し\＄	I	\％0＊0	SIE	\％000	LZ	\％と＇もを	8LZ	\％0．0L	I	カ¢	иоł！！	がてLI	IL
IもI	L0と＇8も\＄	E6I	\％0＇Z9	SS	\％${ }^{\text {c }}$＇	E0I	\％8＇して	ち9	\％と＇L8	I	SZE	นә．лхМ	でILI	69
LZI	68L＇Sも\＄	8才I	\％ 5 ＇$¢ 5$	ち8	\％9＇Z	IL	\％ガらZ		\％ガSL	I	SSZ	иоұ！！	9＊LI	02
6EI	もLて＇8も\＄	89I	\％で8S	LT	\％8＇ع	LもI	\％も゙8I	ちS	\％0＂Z8	I	LS96	О！ЧО	LIL	89
SカI	0S6＇87\＄	0¢I	\％9＇8t	ZE	\％S＇カ	6ZI	\％ 5 02	9LI	\％I＇LL	I	LZI	ләıng	ガ0LI	$\angle 9$
I6	LもS＇Lも\＄	98	\％で8を	89I	\％ガI	もてI	\％9＊0Z	64	\％9＇6L	I	II	ләıng	9＊60I	99
0¢I	6Z0＇Lも\＄	92I	\％6＊${ }^{\circ}$ ¢	6II	\％0＇Z	0ZI	\％602	87	\％9＇Z8	I	カ0＇Z0ヵ	ұиошләГ	9．80I	S9
SE	ع 26 ＇LZ\＄	87	\％ 5 ＇ 2 Z	SIE	\％000	I9	\％I＇LZ	ع8	\％ず6L	I	8\＆	uO7！！ueH	も゙80L	Ђ9
ES	カ¢9＇ZE\＄	E\＆	\％8．0Z	SIE	\％000	70I	\％8＇LZ	七E	\％9＇も8	I	ع9	uOł！！	8． $20 I$	\＆9
LE	LL0＇8Z\＄	I	\％000	SIE	\％000	8I	\％L＇LE	99I	\％S＇EL	I	6	uO7！！ueH	ず 20 I	29
9E	LL0＇8Z\＄	EZ	\％0＇もL	SL	\％L＇Z	L8	\％9＇ゅて	0ZE	\％どZ9	I	99	uOł！！weH	LOL	09
L9	ャ89＇ャ ${ }^{\text {¢ }}$	It	\％ん＇もて	8Z2	\％80	ع9I	\％L＇LI	\＆も	\％でと8	I	20．00I	uO7！！ueH	Z＇LOL	I9
Z0I	S9と＇とも\＄	70I	\％6．をも	L9	\％0＇ε	カロI	\％881	ZZI	\％S．9L	I	70．9IZ	uOł！！weH	9．90I	8S
EL	809＇LE\＄	St	\％6．97	6才I	\％L＇L	602	\％I＇SI	8S	\％L＇L8	I	9EI	ләрng	8．90I	6S
LEI	LE8＇\angle ¢\＄	SS	\％S．6Z	DLI	\％ガL	08	\％9＇もて	98	\％で6L	I	69	uOł！！	ガ90L	LS
yuey	хәри।	yuey	хәри	yuey	хәри！	yuey	хәри	yuey	хәри।	әऐчைen0	ıəqunN		хәри！	yuey
әmosul K！！uej		әınłวnıłS K！！ued		8и！рмол		uouesnp］		uouednכo		¥－¢ı snsuəつ		রıunos	S 3 S	

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
86	122.4	Hamilton	100.01	1	74.4\%	150	19.2\%	141	2.6\%	88	45.6\%	111	\$45,909	122
88	124	Brown	9518	1	80.7\%	70	24.4\%	84	0.9\%	220	51.9\%	141	\$43,472	105
87	123.6	Hamilton	62.01	1	72.3\%	181	20.9\%	121	1.8\%	135	40.4\%	91	\$41,373	90
89	124.6	Hamilton	22	1	68.8\%	233	26.1\%	64	1.1\%	194	33.1\%	65	\$36,500	67
90	125.8	Grant	9804	1	73.7\%	163	25.0\%	76	1.3\%	184	46.1\%	117	\$41,316	89
91	126.6	Butler	123	1	84.2\%	36	18.3\%	148	2.0\%	125	61.7\%	189	\$47,542	135
92	127	Bracken	9501	1	77.1\%	117	29.2\%	53	0.0\%	315	43.2\%	102	\$30,809	48
93	127.2	Kenton	669	1	79.9\%	77	21.1\%	116	3.2\%	57	66.5\%	230	\$50,139	156
93	127.2	Butler	132	1	74.9\%	146	22.4\%	98	0.5\%	278	33.4\%	68	\$30,388	46
95	128	Boone	703.01	1	81.4\%	62	21.5\%	107	1.1\%	201	61.7\%	188	\$40,407	82
96	128.2	Gallatin	9601	1	82.4\%	49	27.0\%	63	1.0\%	206	61.6\%	187	\$47,714	136
97	128.8	Hamilton	89	1	85.6\%	29	14.6\%	222	0.0\%	315	29.6\%	56	\$23,750	22
98	129.2	Warren	305.01	1	76.1\%	125	20.5\%	126	1.9\%	128	53.3\%	149	\$45,313	118
99	130	Hamilton	99.02	1	74.5\%	149	15.0\%	214	1.7\%	147	31.4\%	59	\$40,288	81
100	130.8	Hamilton	74	1	75.2\%	142	10.7\%	305	2.2\%	115	4.9\%	15	\$38,882	77
100	130.8	Kenton	607	1	67.2\%	255	27.8\%	57	1.2\%	187	38.0\%	84	\$37,083	71
102	132	Butler	130	1	79.3\%	84	21.5\%	105	0.0\%	315	45.8\%	114	\$28,971	42
103	133	Dearborn	803	1	81.3\%	63	24.9\%	77	2.7\%	78	71.7\%	277	\$51,100	170
104	133.4	Hamilton	83	1	70.1\%	214	20.7\%	123	3.9\%	44	46.7\%	121	\$50,734	165
105	134.2	Hamilton	17	1	61.1\%	336	37.8\%	17	0.0\%	315	0.0\%	1	\$7,434	2
106	134.6	Clermont	420	1	82.1\%	52	22.2\%	101	1.4\%	172	62.2\%	194	\$49,965	154
107	135.2	Kenton	616	1	59.8\%	357	31.8\%	39	2.2\%	110	51.0\%	139	\$26,563	31
109	135.6	Butler	1	1	82.0\%	53	17.8\%	160	2.4\%	95	58.7\%	173	\$54,492	197
107	135.2	Clermont	416	1	73.0\%	172	21.5\%	110	4.1\%	39	55.9\%	160	\$54,289	195
110	137.2	Hamilton	216.02	1	67.5\%	250	15.9\%	193	3.8\%	45	46.6\%	120	\$39,750	78
111	139.6	Hamilton	252	1	78.2\%	100	22.1\%	102	0.9\%	211	47.6\%	125	\$50,439	160
112	140	Grant	9802	1	78.5\%	92	17.2\%	173	5.5\%	23	70.9\%	269	\$48,480	143
113	140.8	Kenton	614	1	78.4\%	97	21.5\%	106	0.0\%	315	33.9\%	72	\$44,857	114
114	141.2	Pendleton	9903	1	78.6\%	91	25.5\%	70	1.9\%	130	76.1\%	302	\$44,803	113

2005-2009
Family Structure Family Income

글
こ
0

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
143	166.8	Warren	314	2	73.2\%	169	15.6\%	201	0.9\%	217	46.8\%	123	\$46,059	124
145	168	Hamilton	218.02	2	76.9\%	119	16.1\%	189	1.7\%	143	65.4\%	220	\$51,045	169
146	168.8	Brown	9517	2	75.9\%	129	22.8\%	89	0.0\%	315	63.1\%	204	\$43,942	107
147	170.6	Hamilton	4	2	48.1\%	436	20.0\%	132	2.8\%	73	17.9\%	29	\$53,115	183
148	171.8	Butler	2	2	77.3\%	113	18.7\%	145	0.0\%	315	58.1\%	167	\$45,344	119
149	173	Hamilton	55	2	73.0\%	173	14.0\%	232	0.7\%	255	51.2\%	140	\$35,530	65
150	173.4	Kenton	657	2	71.8\%	186	24.1\%	86	3.1\%	58	81.9\%	359	\$52,000	178
151	173.8	Hamilton	8	2	54.0\%	397	22.5\%	96	0.0\%	315	0.0\%	1	\$34,167	60
152	175	Hamilton	219	2	74.5\%	148	14.4\%	225	0.0\%	315	20.2\%	32	\$50,089	155
153	175.4	Butler	109.01	2	77.4\%	110	15.9\%	192	0.6\%	269	50.5\%	134	\$51,364	172
154	176.6	Hamilton	108	2	67.0\%	262	16.8\%	178	0.0\%	315	0.0\%	1	\$46,583	127
154	176.6	Campbell	511.01	2	67.2\%	253	16.9\%	177	4.0\%	41	76.5\%	308	\$43,380	104
156	177	Hamilton	232.01	2	77.3\%	112	19.7\%	137	1.3\%	182	68.9\%	252	\$55,481	202
158	178	Dearborn	805	2	82.6\%	47	17.1\%	174	0.0\%	315	59.6\%	178	\$51,716	176
157	177.8	Dearborn	807	2	77.9\%	104	13.1\%	248	1.9\%	127	63.7\%	207	\$55,714	203
159	178.2	Hamilton	258	2	76.1\%	127	12.5\%	264	2.1\%	118	50.7\%	137	\$61,477	245
159	178.2	Hamilton	26	2	71.7\%	187	8.4\%	346	0.0\%	315	16.9\%	28	\$18,627	15
161	181	Hamilton	261.02	2	81.6\%	59	20.9\%	119	1.2\%	189	83.6\%	376	\$50,483	162
162	182.2	Hamilton	217.01	2	72.5\%	179	14.6\%	223	0.8\%	223	50.7\%	136	\$49,487	150
163	183.2	Butler	134	2	71.3\%	193	16.5\%	183	0.0\%	315	47.3\%	124	\$43,316	101
164	184	Hamilton	204.01	2	74.2\%	152	17.6\%	167	1.9\%	129	65.5\%	221	\$62,464	251
165	184.8	Butler	101.01	2	75.3\%	139	25.1\%	75	0.0\%	315	66.4\%	229	\$50,777	166
165	184.8	Hamilton	40	2	74.0\%	157	8.1\%	351	0.0\%	315	27.0\%	46	\$32,780	55
167	185.2	Hamilton	261.01	2	75.2\%	141	17.7\%	164	1.7\%	139	69.9\%	261	\$58,371	221
168	185.6	Hamilton	249.01	2	87.5\%	21	27.5\%	60	0.0\%	315	75.0\%	295	\$60,769	237
168	185.6	Warren	321	2	73.8\%	161	22.6\%	93	0.3\%	309	58.3\%	169	\$54,435	196
170	186	Brown	9514	2	74.1\%	155	18.3\%	151	1.3\%	180	67.5\%	237	\$56,000	207
171	187.4	Hamilton	216.03	2	72.9\%	174	16.2\%	186	2.9\%	68	63.4\%	205	\$68,442	304
172	187.6	Butler	109.08	2	61.9\%	324	32.5\%	36	1.8\%	133	63.1\%	203	\$61,078	242

2005－2009
Family Structure Family Income

m	m
m	n
n	n
n	0
∞	∞

7
\vdots
\vdots
\vdots
0

 $\underset{\sim}{\wedge} \stackrel{n}{\wedge}$ Crowding
 Education

86I	ع8S＇ヵら\＄	86I	\％L＇Z9	しヵて	\％L＇0	S92	\％ガてI	ちてI	\％で9L	Z	ZでてもZ	иоł！！	Z＇S0Z	L0Z
ちて	とわ9「もて\＄	ちて	\％あ゙も	SIE	\％000	0ZZ	\％ぐもI	てもも	\％9「らも	Z	0I	uOł！！${ }^{\text {are }}$	S0Z	002
LLI	とZL＇LS\＄	9II	\％「「97	LEI	\％8＇	L8Z	\％L＇LI	\＆IE	\％6729	Z	60\％60I	ләın＇g	8＇も0Z	66I
SEZ	6もS＇09\＄	SII	\％6＊「	LもZ	\％L＇0	Z8	\％あ゙もて	$\varepsilon ヵ \varepsilon$	\％9009	Z	I8	uOł！！	も゙も0Z	86I
ESZ	カ9L＇29\＄	602	\％6．と9	ISI	\％9＇L	ZIZ	\％0＇SI	S6I	\％でIL	Z	9060I	Jəıng	カ0Z	L6I
L8I	6Z9＇ES\＄	IL	\％8＇とを	LII	\％I＇Z	\＆とE	\％6．8	ILE	\％でと9	Z	L0＇ILI	ләцn＇	8．E0Z	96I
カ二Z	عIE＇S9\＄	9LZ	\％9＇IL	ESI	\％9＇L	0LZ	\％I＇SI	Z0I	\％0．8L	Z	L0＇L0E	иә．лхМ	ع0Z	S6I
SZ	عと¢＇SZ\＄	LもZ	\％Z＇89	SIE	\％000	29I	\％L゙くI	ち92	\％0＊ 29	Z	LZ	uOł！！${ }^{\text {uen }}$	9＇Z0Z	カ6I
LZZ	カ二I＇6S\＄	20才	\％8＇58	\＆も	\％6＇${ }^{\circ}$	002	\％9＇SI	LEI	\％${ }^{\prime}$ S \angle	2	ても9	นоұนәУ	8．10Z	ع6I
\＆9Z	ZZ6＇と9\＄	も9I	\％9＇9S	SIE	\％000	76I	\％6．SI	IL	\％も゙08	Z	S0I	uOł！！	も゙L0Z	26I
20E	68S＇L9\＄	L0才	\％L＇S8	97	\％8＇ε	89I	\％S＇LI	L8	\％ 5 6	Z	20．50L	әuoog	8．002	L6I
ELI	LLS＇IS\＄	0LI	\％ガSも	SZZ	\％8＊0	ZLI	\％ZでLI	LIE	\％L＇Z9	Z	8L	иоұ！！	$7{ }^{\circ} 66$	06I
カも	LIS＇8も\＄	96	\％6＇IT	SIE	\％000	ももて	\％9＇とI	I6I	\％9「1L	Z	959	иоұนәу	86I	68I
292	6L6＇と9\＄	9SI	\％I＇SS	Z9I	\％S＇L	9SI	\％0．8L	6もて	\％S＇L9	Z	Z0＊ 2 IT	ұиош．	L6I	88I
SLI	L69＇LS\＄	Z 21	\％S＇8S	ELI	\％ガ	9LI	\％0＊ 2 I	L8Z	\％ずS9	Z	09	uoł！！ue	9．96I	98I
98I	ZID＇ES\＄	682	\％6＇ \mathcal{L}	LEZ	\％8＊0	0もI	\％と＇6I	IEI	\％L＇SL	Z	\＆LS6	umorg	9＇96I	98I
782	ELI＇99\＄	78I	\％909	06	\％${ }^{\circ} \mathrm{Z}$	\＆もて	\％9＇とI	08I	\％S＇ZL	Z	SIE	иәллеМ	て＇96I	S8I
0LZ	も¢も＇9S\＄	S9I	\％9＇9S	6IZ	\％6＂0	Z0Z	\％S＇SI	78I	\％でてL	Z	ZI	Jəpng	96I	も8I
902	ع68＇SS\＄	SL	\％9＇も	SIE	\％000	6LI	\％8．91	七02	\％80L	Z	90．9IZ	uOł！！ueH	8．56I	E8I
6IZ	6L9＇LS\＄	Z62	\％S＇もL	SIE	\％000	88	\％I＇とZ	09	\％9＇L8	Z	Z0＇I0E	Uә．ıеМ	8＇も6I	Z8I
8SI	ELE＇0S\＄	08I	\％86S	SIE	\％000	ZSI	\％で8L	09I	\％6 ${ }^{\circ} \mathrm{E}$ L	Z	カ0\％60L	ıəıng	ع6I	L8I
カ0Z	S6L＇SS\＄	8ZE	\％6\％LL	SIE	\％000	Eも	\％て＇IE	S9	\％I＇L8	Z	ち0．E0L	әuoog	I6I	08I
S8	ても0＇しも\＄	$\angle \square I$	\％0＇ES	0才	\％I＇t	Iもて	\％8＇$¢ 1$	6\＆7	\％8．9ヵ	Z	It	uоł！！ueH	す06L	LLI
6It	Sも8＇L6\＄	IEI	\％067	SIE	\％000	6	\％8＇ても	08	\％S＇6L	Z	20＇L	Jəpng	8．06I	6LI
8もて	000＇z9\＄	8ヵ¢	\％L＇08	EZI	\％0＇Z	ZII	\％て＇LZ	LZI	\％9＊9	Z	2IS6	umorg	7．06L	LLI
6E	0SL＇8Z\＄	SLD	\％0．00工	SIE	\％000	00I	\％でてZ	LI	\％9＇88	Z	6ZI	Jəpng	Z＇68I	SLI
6LI	880＇75\＄	29才	\％でと6	9II	\％I＇Z	EII	\％でして	94	\％6．6L	Z	Z0＊LE9	บоұนวу	Z＇68I	SLI
0ZI	9と9＇5も\＄	60I	\％ずらも	9EI	\％8＇I	0عZ	\％エ＇もI	8も¢	\％と＇09	Z	も¢Z	uOł！！ueh	9＇88I	カムI
08I	0SZ＇ZS\＄	8\＆Z	\％S＇L9	SLI	\％ガ	LSI	\％6＊LI	68I	\％9＇LL	Z	ELI	ләıng	8 281	ELI
yuey	хәри｜	yuey	хәри！	》uey	хәри！	yuey	хәри	yuey	хәри！	әฺчenర	ıəqunN		хәри！	yuey
әmosul K！！wej		əanłonıłS K！！ues		su！pмoл		uoب̣eכnp		uouednowo		preaı snsuəj		রıunos	S 3 S	

 Census Tract \qquad $N \sim N \sim N$
 $\sim \sim$

\qquad

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
202	206.6	Clermont	413.04	2	69.8\%	219	17.8\%	159	2.3\%	101	69.8\%	259	\$66,893	295
203	208.2	Clermont	408	2	74.0\%	158	14.1\%	228	2.7\%	82	77.5\%	324	\$62,007	249
204	208.4	Hamilton	32	2	45.2\%	446	1.6\%	472	6.1\%	19	21.9\%	36	\$36,875	69
205	208.6	Kenton	659	2	75.0\%	144	12.4\%	268	0.9\%	222	60.7\%	185	\$59,013	224
206	209.6	Brown	9519	2	70.5\%	209	17.2\%	171	2.3\%	107	82.1\%	360	\$55,445	201
207	210.4	Butler	9	2	73.6\%	164	14.3\%	226	0.4\%	288	63.9\%	210	\$50,536	164
208	211.6	Hamilton	215.72	2	70.8\%	202	11.4\%	288	0.7\%	250	44.6\%	107	\$56,486	211
209	211.8	Hamilton	79	2	73.5\%	165	15.2\%	208	0.0\%	315	59.4\%	177	\$54,097	194
210	212.6	Hamilton	25	2	57.2\%	377	13.0\%	251	0.0\%	315	21.1\%	34	\$41,083	86
211	213.4	Campbell	511.02	2	84.9\%	32	11.6\%	283	0.0\%	315	70.1\%	263	\$51,607	174
212	213.8	Franklin	9698	2	75.2\%	143	12.7\%	255	1.6\%	154	72.6\%	284	\$60,417	233
213	214.8	Clermont	407.01	2	57.8\%	373	11.8\%	280	1.8\%	132	37.3\%	81	\$56,319	208
214	216.2	Hamilton	84	2	64.7\%	296	10.2\%	315	0.0\%	315	28.8\%	53	\$43,365	102
215	217.8	Bracken	9502	2	75.0\%	145	33.9\%	30	1.0\%	208	92.8\%	460	\$61,607	246
216	219	Brown	9515	2	75.3\%	136	17.2\%	170	0.5\%	280	77.1\%	316	\$54,030	193
217	220.2	Hamilton	218.01	2	71.1\%	198	9.5\%	329	0.5\%	281	43.2\%	103	\$53,833	190
218	220.4	Hamilton	82.01	2	66.5\%	271	8.1\%	350	1.7\%	146	46.5\%	119	\$57,357	216
219	221.6	Hamilton	205.05	2	76.0\%	128	13.2\%	247	0.0\%	315	53.8\%	153	\$64,028	265
220	222	Hamilton	207.05	2	73.1\%	170	19.9\%	134	0.0\%	315	63.1\%	202	\$66,600	289
220	222	Hamilton	238	2	70.7\%	205	15.4\%	205	0.2\%	312	56.5\%	163	\$59,071	225
222	222.6	Hamilton	215.71	2	58.9\%	362	16.2\%	187	3.0\%	63	65.0\%	216	\$66,250	285
223	222.8	Clermont	414.03	2	65.9\%	279	13.8\%	240	0.7\%	245	56.3\%	162	\$53,676	188
224	223.2	Campbell	521	2	68.8\%	235	19.2\%	142	0.0\%	315	67.1\%	233	\$53,856	191
224	223.2	Kenton	638	2	55.3\%	390	14.0\%	233	1.3\%	183	55.8\%	159	\$49,536	151
224	223.2	Hamilton	30	2	65.9\%	278	7.3\%	374	8.7\%	8	84.9\%	393	\$35,208	63
224	223.2	Hamilton	254.02	2	61.8\%	327	18.1\%	155	0.9\%	212	63.0\%	199	\$58,971	223
228	223.8	Hamilton	99.01	2	67.9\%	244	15.2\%	206	0.8\%	226	64.9\%	215	\$59,489	228
229	224.8	Hamilton	215.04	2	65.2\%	291	10.4\%	311	0.9\%	209	42.8\%	99	\$57,239	214
230	225.2	Hamilton	209.01	2	68.4\%	237	14.9\%	218	0.8\%	229	72.5\%	283	\$50,417	159

2005-2009

$\underset{\sim}{\wedge} \underset{\sim}{\wedge}$

SES		County
231	Index	
232	227.4	Hamilton
233	229	Hamilton
235	229.6	Butler
234	229.4	Hamilton
236	231	Clermont
237	232	Hamilton
238	232.2	Hamilton
239	232.6	Butler
240	232.8	Boone
242	234.6	Dearborn
241	234.4	Butler
243	237.2	Hamilton
244	237.6	Kenton
245	238.2	Butler
246	239.4	Clermont
246	239.4	Hamilton
248	242	Hamilton
249	242.4	Kenton
250	242.6	Hamilton
251	243	Kenton
252	244.2	Hamilton
253	245.4	Warren
255	247.2	Campbell
256	249.2	Hamilton
254	246.8	Warren
257	249.6	Hamilton
250.4	Hamilton	
25	Clermont	
25		
25		

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
260	252.2	Clermont	405	3	67.6\%	248	11.3\%	294	0.0\%	315	65.6\%	223	\$52,614	181
261	252.4	Dearborn	804	3	69.7\%	221	11.3\%	291	1.5\%	163	75.0\%	294	\$66,798	293
262	254.4	Dearborn	801.01	3	72.2\%	183	14.7\%	221	1.4\%	166	92.9\%	461	\$60,966	241
263	254.6	Clermont	402.03	3	74.4\%	151	15.6\%	197	0.0\%	315	77.2\%	319	\$66,731	291
264	255	Hamilton	111	3	64.5\%	299	5.1\%	415	3.0\%	62	67.7\%	241	\$63,542	258
265	256	Hamilton	46.01	3	49.6\%	428	15.6\%	198	0.4\%	296	39.5\%	89	\$64,702	269
266	257.4	Kenton	646	3	65.8\%	282	11.4\%	289	1.5\%	161	63.6\%	206	\$75,208	349
266	257.4	Hamilton	237.02	3	65.0\%	295	18.5\%	146	0.0\%	315	74.4\%	291	\$60,885	240
268	258.4	Dearborn	802.01	3	73.0\%	171	7.6\%	367	2.9\%	66	80.4\%	346	\$73,906	342
268	258.4	Hamilton	232.1	3	65.3\%	290	12.7\%	258	0.4\%	295	65.4\%	219	\$59,856	230
270	258.8	Butler	13	3	66.6\%	268	8.0\%	356	0.8\%	227	59.8\%	179	\$64,000	264
271	261	Campbell	519.01	3	70.7\%	206	11.6\%	282	2.2\%	111	85.7\%	400	\$68,882	306
272	261.2	Hamilton	247	3	71.2\%	197	10.1\%	316	0.3\%	304	63.8\%	208	\$66,000	281
273	262.2	Campbell	524	3	72.2\%	182	14.9\%	219	0.0\%	315	82.3\%	364	\$59,904	231
274	262.8	Franklin	9696	3	65.5\%	285	14.0\%	234	1.5\%	159	85.6\%	398	\$60,781	238
274	262.8	Hamilton	210.03	3	67.8\%	246	10.3\%	314	0.7\%	254	54.3\%	155	\$74,464	345
276	263.4	Hamilton	56	3	66.4\%	273	17.8\%	161	0.0\%	315	76.5\%	309	\$63,561	259
277	264.2	Butler	101.02	3	53.3\%	403	13.1\%	249	1.0\%	203	71.2\%	274	\$53,929	192
278	264.6	Kenton	636.04	3	74.6\%	147	6.5\%	388	0.0\%	315	63.0\%	200	\$65,243	273
278	264.6	Hamilton	237.01	3	68.7\%	236	15.4\%	204	0.0\%	315	71.1\%	272	\$66,905	296
278	264.6	Hamilton	254.01	3	64.6\%	297	17.0\%	175	0.0\%	315	77.9\%	327	\$56,326	209
281	264.8	Kenton	637.01	3	70.1\%	216	14.9\%	216	0.0\%	315	78.0\%	330	\$61,932	247
282	265.6	Butler	120	3	77.3\%	114	16.3\%	185	0.0\%	315	84.5\%	387	\$72,042	327
282	265.6	Kenton	636.03	3	66.1\%	277	14.0\%	235	2.6\%	87	87.6\%	418	\$69,236	311
284	266.6	Clermont	407.02	3	70.8\%	203	15.0\%	213	0.0\%	315	84.3\%	385	\$57,440	217
284	266.6	Hamilton	57.02	3	57.7\%	374	8.9\%	336	0.0\%	315	41.2\%	93	\$57,256	215
286	266.8	Hamilton	221.02	3	62.8\%	315	6.1\%	405	2.7\%	76	68.8\%	250	\$66,290	288
287	267.2	Hamilton	230.01	3	67.0\%	259	11.6\%	285	0.9\%	221	71.0\%	270	\$67,500	301
288	268	Campbell	520.01	3	73.8\%	162	12.8\%	254	1.6\%	155	85.4\%	397	\$80,111	372

2005-2009
 닉

SES		County
288	268	Kenton
290	268.2	Kenton
291	269.8	Butler
292	270	Clermont
293	270.2	Clermont
294	272	Hamilton
294	272	Hamilton
296	272.2	Hamilton
297	272.4	Butler
297	272.4	Hamilton
299	273.4	Campbell
300	273.8	Clermont
301	274.2	Hamilton
302	274.8	Campbell
302	274.8	Kenton
302	274.8	Butler
305	275.2	Campbell
306	277.4	Kenton
307	277.6	Hamilton
308	278.2	Hamilton
309	278.4	Campbell
311	279.8	Butler
312	280.4	Hamilton
313	281.2	Hamilton
310	279.4	Warren
314	282	Butler
315	283.2	Ohio
283.8	Hamilton	
284	Clermont	
20		

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
318	284.6	Warren	310	3	65.2\%	292	12.1\%	274	0.6\%	272	69.3\%	256	\$72,204	329
319	284.8	Warren	307	3	68.1\%	239	11.6\%	284	0.0\%	315	72.8\%	286	\$67,419	300
320	285.8	Campbell	528	3	66.5\%	270	11.3\%	293	0.8\%	233	76.6\%	310	\$71,406	323
321	287.4	Boone	705.01	3	69.0\%	232	6.2\%	402	1.2\%	188	72.2\%	280	\$73,041	335
322	287.6	Butler	108	3	67.1\%	258	12.2\%	270	0.8\%	232	82.1\%	361	\$70,599	317
322	287.6	Hamilton	208.11	3	69.2\%	225	7.0\%	382	0.6\%	271	76.3\%	303	\$63,503	257
324	288.6	Clermont	413.03	3	63.9\%	301	13.9\%	239	1.5\%	165	82.8\%	370	\$79,397	368
324	288.6	Hamilton	102.02	3	63.4\%	309	17.9\%	158	0.0\%	315	78.8\%	336	\$71,638	325
326	290.2	Hamilton	207.61	3	60.0\%	354	12.2\%	269	0.0\%	315	69.0\%	253	\$63,609	260
327	290.8	Butler	110.01	3	67.1\%	257	10.7\%	304	0.6\%	261	77.0\%	313	\$70,903	319
328	292.8	Dearborn	802.02	3	71.6\%	188	8.8\%	339	0.7\%	239	84.4\%	386	\$69,517	312
329	293	Hamilton	20	3	49.7\%	427	4.9\%	421	2.7\%	81	53.8\%	151	\$83,393	385
330	294.2	Kenton	636.05	3	65.7\%	283	11.6\%	286	0.6\%	262	81.1\%	353	\$66,270	287
331	294.6	Campbell	522	3	66.5\%	272	8.7\%	341	0.0\%	315	76.7\%	311	\$60,536	234
331	294.6	Clermont	412	3	60.5\%	344	8.3\%	347	2.0\%	124	83.6\%	378	\$65,903	280
331	294.6	Hamilton	205.04	3	63.9\%	302	8.2\%	349	2.4\%	99	78.6\%	335	\$83,676	388
334	294.8	Butler	107	3	67.8\%	245	13.7\%	242	0.5\%	279	83.6\%	377	\$72,675	331
335	295.2	Warren	311	3	71.0\%	200	12.6\%	261	1.1\%	199	87.6\%	419	\$86,452	397
336	296	Clermont	414.04	3	58.2\%	366	11.8\%	278	0.0\%	315	67.9\%	243	\$65,509	278
337	296.8	Hamilton	210.02	3	70.6\%	208	10.4\%	310	0.0\%	315	81.2\%	354	\$66,944	297
338	297	Kenton	652	3	49.8\%	424	10.0\%	319	1.3\%	179	67.9\%	242	\$71,196	321
339	298.6	Hamilton	243.03	3	63.7\%	304	9.9\%	320	0.7\%	242	68.8\%	251	\$81,048	376
340	298.8	Hamilton	213.03	3	65.1\%	293	6.2\%	400	1.2\%	192	67.4\%	235	\$80,558	374
341	299	Hamilton	222	3	61.3\%	333	8.8\%	337	1.3\%	178	74.5\%	293	\$75,893	354
342	299.4	Hamilton	57.01	3	50.3\%	417	6.2\%	401	0.0\%	315	52.7\%	144	\$57,917	220
343	300.4	Hamilton	235.22	3	58.3\%	365	10.9\%	301	0.6\%	263	67.3\%	234	\$73,235	339
344	302	Warren	319.04	3	66.9\%	265	7.3\%	372	1.2\%	190	78.2\%	332	\$75,357	351
345	303.6	Hamilton	226.02	3	60.2\%	352	1.8\%	471	2.3\%	106	62.4\%	195	\$85,250	394
346	307.6	Hamilton	7	3	57.0\%	380	25.8\%	66	1.1\%	200	100.0\%	475	\$91,484	417

2005-2009 | Family Structure | | Family Income | |
| :--- | :--- | :--- | :--- |
| Index | Rank | Index | Ra |

∞
m
m
∞
\cdots
\cdots
\cdots
$\underset{\infty}{\infty}$

 $\begin{array}{ll}\text { on } \\ 0 & \text { on } \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$ $\stackrel{0}{+}$
$\dot{+}$
\vdots
∞
 $\begin{array}{ll}\text { O} \\ 0 & \\ \text { N } \\ \text { N }\end{array}$
 Crowding

Education
Index

 gl

 구
$\stackrel{-}{1}$

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
376	333	Warren	320.07	4	61.1\%	338	8.7\%	340	0.2\%	311	79.8\%	343	\$72,837	333
377	333.6	Butler	102.02	4	66.6\%	267	7.7\%	364	0.0\%	315	86.0\%	406	\$70,529	316
378	333.8	Franklin	9601	4	61.8\%	328	7.3\%	373	0.8\%	238	84.6\%	389	\$73,663	341
379	334.4	Boone	703.06	4	63.5\%	307	6.9\%	384	0.5\%	275	78.4\%	333	\$80,139	373
380	335.6	Hamilton	107	4	69.2\%	227	10.4\%	309	0.0\%	315	100.0\%	475	\$75,610	352
381	336.4	Kenton	636.06	4	59.0\%	361	7.7\%	363	2.4\%	97	91.8\%	454	\$88,505	407
382	336.6	Campbell	523.01	4	55.8\%	386	3.3\%	454	1.8\%	134	75.4\%	297	\$89,322	412
383	336.8	Hamilton	53	4	42.9\%	460	5.8\%	406	0.0\%	315	34.1\%	73	\$97,066	430
384	338.2	Boone	704.02	4	65.8\%	281	9.6\%	325	0.0\%	315	87.8\%	422	\$75,132	348
384	338.2	Butler	125	4	58.1\%	367	10.6\%	307	0.0\%	315	79.6\%	342	\$77,900	360
386	343.4	Warren	316	4	60.6\%	342	9.8\%	323	0.0\%	315	86.5\%	409	\$72,092	328
387	344.6	Butler	124	4	55.3\%	391	2.9\%	462	0.0\%	315	61.8\%	190	\$79,009	365
388	344.8	Kenton	645	4	54.8\%	394	5.6\%	408	1.2\%	191	80.8\%	349	\$83,016	382
389	345.2	Hamilton	251.02	4	61.3\%	332	4.1\%	442	0.6\%	268	77.1\%	318	\$79,097	366
390	346.2	Hamilton	205.01	4	61.4\%	331	8.9\%	334	0.0\%	315	89.6\%	438	\$70,000	313
391	346.6	Butler	109.07	4	64.1\%	300	7.9\%	358	0.0\%	315	91.4\%	452	\$69,179	308
392	347.2	Campbell	519.04	4	61.6\%	330	9.0\%	332	0.0\%	315	85.9\%	404	\$76,597	355
393	348.6	Hamilton	260.01	4	74.1\%	154	3.7\%	450	0.0\%	315	87.1\%	414	\$88,882	410
394	349.2	Hamilton	42	4	41.1\%	464	16.1\%	188	0.0\%	315	82.2\%	363	\$90,259	416
395	349.4	Boone	704.01	4	53.9\%	398	6.8\%	385	1.7\%	141	83.4\%	373	\$107,425	450
396	352	Kenton	648	4	51.6\%	413	6.3\%	398	0.7\%	257	72.4\%	281	\$89,297	411
397	352.4	Boone	706.03	4	61.9\%	323	6.3\%	397	0.6\%	266	81.2\%	355	\$92,642	421
398	353.2	Hamilton	52	4	49.2\%	431	6.4\%	392	0.0\%	315	65.6\%	222	\$87,870	406
398	353.2	Hamilton	239.01	4	47.8\%	438	4.4\%	436	3.1\%	59	88.8\%	428	\$87,685	405
400	353.4	Butler	101.03	4	43.2\%	458	3.7\%	447	0.0\%	315	65.0\%	217	\$72,532	330
401	354.4	Hamilton	106	4	67.0\%	260	4.3\%	439	0.0\%	315	100.0\%	475	\$66,071	283
402	354.6	Warren	312	4	61.1\%	337	4.8\%	424	0.4\%	289	77.3\%	321	\$87,384	402
403	356	Boone	703.07	4	62.2\%	321	5.4\%	411	0.4\%	298	79.4\%	341	\$88,767	409
404	356.8	Butler	109.03	4	59.2\%	360	8.8\%	338	0.0\%	315	88.3\%	425	\$74,850	346

2005-2009

$\|r\|$	Family Structure	Family Income

 Crowding

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
434	381.4	Clermont	415.01	4	60.1\%	353	6.7\%	387	0.5\%	284	90.7\%	444	\$100,938	439
435	381.6	Warren	308	4	58.3\%	364	7.6\%	366	0.0\%	315	89.3\%	436	\$95,271	427
436	381.8	Butler	111.01	4	49.5\%	429	7.1\%	377	0.9\%	210	90.9\%	446	\$105,563	447
436	381.8	Warren	322.02	4	51.1\%	416	10.0\%	318	0.1\%	313	86.5\%	408	\$110,625	454
438	383.6	Hamilton	224	4	50.0\%	423	7.2\%	376	0.7\%	253	89.0\%	430	\$99,327	436
439	386.4	Hamilton	208.12	4	56.4\%	385	5.1\%	417	0.0\%	315	91.2\%	451	\$78,852	364
440	386.6	Hamilton	251.03	4	53.9\%	399	5.3\%	414	0.5\%	283	85.9\%	403	\$98,665	434
441	388.4	Hamilton	211.02	4	62.8\%	316	4.0\%	443	0.0\%	315	91.0\%	450	\$91,614	418
442	388.8	Hamilton	213.02	4	60.7\%	341	4.8\%	425	0.0\%	315	89.1\%	432	\$97,119	431
443	389.8	Warren	319.02	4	52.2\%	408	2.5\%	466	0.7\%	246	84.8\%	392	\$99,400	437
444	390	Hamilton	211.01	4	59.8\%	356	5.4\%	412	0.0\%	315	91.6\%	453	\$89,552	414
445	391.2	Warren	322.01	4	54.6\%	395	5.4\%	410	0.0\%	315	87.8\%	421	\$89,561	415
446	394	Hamilton	241	4	46.4\%	441	4.5\%	431	0.0\%	315	84.0\%	380	\$87,473	403
447	397.6	Warren	320.04	4	43.4\%	456	6.1\%	403	0.8\%	231	90.0\%	442	\$112,361	456
448	398.4	Hamilton	243.21	4	48.1\%	437	4.9\%	419	0.4\%	294	84.7\%	391	\$107,692	451
449	400	Hamilton	71	4	35.4\%	472	7.0\%	381	0.0\%	315	83.6\%	375	\$113,333	457
450	402.2	Hamilton	13	4	58.5\%	363	1.2\%	474	0.0\%	315	86.4\%	407	\$108,618	452
451	402.4	Butler	111.08	4	45.0\%	449	3.9\%	445	0.0\%	315	81.8\%	358	\$104,712	445
452	404.4	Kenton	655.02	4	45.5\%	445	4.5\%	432	0.0\%	315	88.8\%	429	\$87,131	401
453	405.4	Hamilton	233	4	29.0\%	478	3.0\%	461	1.7\%	145	98.4\%	474	\$126,094	469
454	407.4	Butler	111.04	4	50.0\%	422	5.5\%	409	0.0\%	315	90.9\%	448	\$104,091	443
455	407.6	Hamilton	47.01	4	39.5\%	466	4.7\%	426	0.0\%	315	83.5\%	374	\$113,333	457
456	408.2	Campbell	523.02	4	50.0\%	421	2.7\%	465	0.0\%	315	85.4\%	396	\$104,167	444
457	408.4	Butler	111.06	4	51.2\%	414	3.3\%	456	0.0\%	315	87.1\%	415	\$102,745	442
458	408.6	Hamilton	239.02	4	44.0\%	455	7.4\%	371	0.0\%	315	89.0\%	431	\$132,500	471
458	408.6	Hamilton	249.02	4	45.1\%	447	4.9\%	423	0.3\%	302	86.5\%	410	\$114,114	461
460	412	Kenton	655.01	4	53.7\%	400	2.5\%	467	0.0\%	315	92.1\%	455	\$93,095	423
460	412	Warren	305.04	4	48.2\%	435	7.0\%	380	0.0\%	315	95.3\%	470	\$114,069	460
462	415.4	Hamilton	207.07	4	50.2\%	419	3.6\%	451	0.3\%	306	93.7\%	466	\$99,167	435

SES INDEX AND VARIABLES FOR CINCINNATI METROPOLITAN AREA 15 COUNTY CENSUS TRACTS, $2005-2009$

SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
462	415.4	Warren	309	4	43.2\%	457	3.1\%	458	0.7\%	252	90.4\%	443	\$121,792	467
464	418.4	Hamilton	51	4	42.8\%	461	0.0\%	480	0.0\%	315	83.3\%	372	\$115,852	464
465	421.6	Hamilton	231	4	49.1\%	432	4.4\%	438	0.0\%	315	93.9\%	468	\$111,250	455
466	421.8	Clermont	403	4	45.5\%	443	3.1\%	457	0.3\%	308	89.2\%	435	\$121,101	466
467	424.2	Hamilton	248	4	39.1\%	467	4.0\%	444	0.0\%	315	89.1\%	433	\$114,167	462
468	425.6	Hamilton	226.01	4	36.9\%	470	3.1\%	460	0.0\%	315	87.7\%	420	\$114,316	463
469	426	Hamilton	49	4	39.0\%	468	0.4\%	476	0.0\%	315	85.6\%	399	\$132,647	472
470	426.2	Hamilton	48	4	27.8\%	479	0.4\%	477	0.7\%	251	90.9\%	447	\$166,087	477
470	426.2	Hamilton	243.22	4	38.6\%	469	3.3\%	455	0.6\%	274	92.4\%	459	\$142,184	474
472	427	Hamilton	235.01	4	34.0\%	474	4.9\%	420	0.0\%	315	92.3\%	458	\$125,840	468
473	429	Hamilton	251.01	4	44.7\%	451	2.8\%	463	0.0\%	315	92.3\%	457	\$113,839	459
474	429.2	Hamilton	245	4	44.2\%	454	0.2\%	478	0.3\%	305	89.2\%	434	\$150,000	475
475	429.4	Hamilton	212.01	4	45.0\%	448	3.5\%	452	0.0\%	315	93.9\%	467	\$116,453	465
476	433.2	Warren	319.03	4	40.9\%	465	2.5\%	468	0.3\%	307	92.2\%	456	\$128,324	470
477	433.8	Butler	111.12	4	41.5\%	463	2.3\%	469	0.4\%	301	93.2\%	463	\$134,500	473
478	436.6	Hamilton	50	4	33.8\%	475	1.6\%	473	0.0\%	315	95.6\%	472	\$105,625	448
479	436.8	Hamilton	244	4	35.9\%	471	0.2\%	479	0.5\%	285	94.2\%	469	\$227,042	480
479	436.8	Hamilton	251.04	4	33.1\%	476	0.7\%	475	0.0\%	315	89.9\%	440	\$206,500	478
481	438.75	Hamilton	43	4	25.4\%	481	0.0\%	480	0.0\%	315	(2)		\$223,333	479
---- (1)	----	Butler	101.04	---										
---- (1)	--	Butler	102.01	-										
---- (1)	----	Hamilton	1	---										
---- (1)	--	Hamilton	62.02	---										
---- (1)	--	Warren	317	---										
(1)	ACS data does not allow computation of two or more indices (institutionalized population)													
(2)	ACS estimates no children under 18 years living in census tract													

	$\left\|\begin{array}{l} \underset{\sim}{c} \\ \sqrt{0} \\ \hline \end{array}\right\|$	$\stackrel{\sim}{\sim}$	\cdots	${ }_{-}^{\circ}$	$\stackrel{ }{-}$	$\stackrel{\square}{\square}$	$\stackrel{9}{\square}$	$\stackrel{7}{7}$	N	$\stackrel{\infty}{\sim}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{r}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\text { L }}{\sim}$	$\underset{\underset{\sim}{\circ}}{\stackrel{\circ}{N}}$	が	$\stackrel{m}{\square}$	m	$\stackrel{\text { ¢ }}{\text { ¢ }}$	안	¢	ホ	の	∞_{0}^{∞}	ค	F	$\stackrel{\infty}{\circ}$	
	$\left.\begin{array}{\|c} x \\ \mathbf{0} \\ \mathbf{i} \end{array} \right\rvert\,$	$\left\|\begin{array}{l} n \\ n \\ \cdots \\ \cdots \end{array}\right\|$		$\begin{aligned} & \mathrm{N} \\ & \stackrel{1}{n} \\ & \stackrel{1}{6} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{m} \\ & \underset{\sim}{\alpha} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\begin{aligned} & n \\ & \underset{N}{n} \\ & \underset{N}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & 0 \\ & \infty \\ & \underset{N}{n} \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & 0_{0}^{-} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{2} \\ & \mathrm{~N} \\ & \underset{\sim}{2} \end{aligned}$	$\left\|\begin{array}{c} N \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & n \\ & n \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{n} \\ & \underset{N}{N} \\ & \infty \end{aligned}$	$\begin{aligned} & m \\ & m \\ & \\ & \underset{n}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & m \\ & n \\ & n \\ & \underbrace{2} \\ & \infty \end{aligned}$	$\begin{aligned} & \vec{j} \\ & \underset{7}{7} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \hat{1} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|c\|} \hline 9 \\ 1 \\ \underset{\sim}{2} \\ \hat{\beta} \end{array}$	$\begin{aligned} & n \\ & n \\ & \underset{N}{n} \\ & n \\ & \infty \end{aligned}$	$\begin{aligned} & \underset{1}{~} \\ & \underset{\sim}{n} \\ & 0 \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{4} \\ & \stackrel{y}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{ }{n} \\ & \underset{子}{1} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 1 \\ & n \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { n } \\ & \hat{N} \\ & \tilde{m} \\ & n \\ & \omega \end{aligned}$	$\begin{aligned} & \substack{n \\ N \\ \infty \\ \infty \\ \theta} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{N}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	

$\stackrel{N}{ \pm}$		$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\infty}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\circ}$	\bigcirc	N	＋	\mathfrak{m}	※	\bigcirc	¢	$\begin{gathered} \text { ® } \\ \text { N } \end{gathered}$	\checkmark	$\stackrel{m}{n}$	0	\checkmark	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{-}{N}$	\bigcirc	$\stackrel{m}{\square}$	$\stackrel{\underset{\sim}{7}}{\stackrel{1}{2}}$	¢	$\stackrel{1}{\sim}$	$\begin{aligned} & \mathrm{m} \\ & \sim \end{aligned}$	$\begin{aligned} & \stackrel{1}{7} \\ & \underset{7}{2} \end{aligned}$	\checkmark
$\begin{aligned} & \stackrel{\star}{\sim} \\ & \underset{\bar{\epsilon}}{\mathbb{\pi}} \end{aligned}$	$\begin{aligned} & \text { 즐 } \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & +\infty \end{aligned}$	$\begin{aligned} & { }_{0}^{\circ} \\ & \hat{0} \\ & i \end{aligned}$	$\begin{aligned} & 00 \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \stackrel{\rightharpoonup}{n} \\ & \text { m} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{4} \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{n} \\ & \stackrel{1}{m} \end{aligned}$	$\begin{aligned} & 00 \\ & \stackrel{?}{7} \end{aligned}$	$\begin{aligned} & \text {-̀ } \\ & \text { Ǹ } \\ & \text { Nे } \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{1}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & e \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \underset{\sim}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{+} \\ & \underset{+}{\infty} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे} \\ & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & 0.0 \\ & 0 . \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \stackrel{+}{\mathrm{L}} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { m } \\ & \text { m } \end{aligned}$		$\begin{aligned} & \text { ô } \\ & \stackrel{0}{2} \\ & \dot{+} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { m } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \circ 0 \\ & \infty \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { nj } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { ì } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	$\underset{\underset{\sigma}{c}}{\underline{C}}$	～	の	＊	N	op	ำ	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\infty}$	$\stackrel{\bullet}{0}$	$\stackrel{\bullet}{N}$	$\underset{N}{N}$	\checkmark	，	m	ம	\cdots	$\underset{\sim}{7}$	m	$\stackrel{\circ}{\mathrm{N}}$	$\underset{\sim}{\underset{\sim}{\sim}}$	N	m	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\sim}{n}$	\bigcirc	\bigcirc	¢
$\frac{0}{0}$	$\begin{aligned} & \text { 줄 } \\ & \mathbf{0} \end{aligned}$	ô	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & a_{n} \\ & \stackrel{\rightharpoonup}{i} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\circ}{\mathrm{\gamma}}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { oొ } \\ & \text { ñ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { o? } \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & 0 \\ & 10 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { o̊ } \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \stackrel{-}{1} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { à } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { o? } \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$\begin{aligned} & \stackrel{0}{2} \\ & \text { m} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hat{N} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { n. } \end{aligned}$	$\stackrel{+0}{+}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \stackrel{\rightharpoonup}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \alpha^{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
	$\frac{\underset{\sim}{c}}{\underset{\sim}{c}}$	$\stackrel{7}{7}$	$\underset{\sim}{\infty}$	ㄴํ	N	9	$\underset{\sim}{\sim}$	$\stackrel{\leftrightarrow}{\sim}$	$\stackrel{\sim}{n}$	\cdots	$\stackrel{-}{m}$	in	$\stackrel{\sim}{\sim}$	$\stackrel{\text {＋}}{ }$	0	$\underset{F}{F}$	เ	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	m	∞	ㅇ	$\underset{m}{N}$	∞	$\stackrel{H}{r}$	$\underset{N}{7}$	8	\bigcirc	$\begin{aligned} & n \\ & n \end{aligned}$	$\stackrel{+}{\square}$
금	$\begin{aligned} & \text { 즐 } \\ & \text { 들 } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\square} \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { ò } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { ơ } \\ & \stackrel{?}{n} \\ & \hat{m} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \stackrel{+}{7} \end{aligned}$	$\begin{aligned} & 00 \\ & \vec{m} \\ & i \end{aligned}$	$\begin{aligned} & \text { o̊ } \\ & \stackrel{1}{n} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & 20 \\ & \stackrel{0}{6} \\ & \dot{7} \end{aligned}$	$\begin{aligned} & \text { o̊ } \\ & \stackrel{\rightharpoonup}{n} \\ & \underset{m}{n} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \text { m } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{+}{\infty} \\ & \text { in } \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \\ & i \\ & m \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{o}} \\ & \stackrel{\rightharpoonup}{\mathrm{i}} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & i \\ & m \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{+} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{\mathrm{N}} \\ & \mathbf{i} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{1}{n} \\ & \underset{m}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \stackrel{+}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\text { O}}{+} \\ & \underset{\sim}{+} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \stackrel{0}{n} \\ & \text { ǹ } \end{aligned}$	$$	$\begin{aligned} & \text { ơ } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { ஸ. } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \stackrel{0}{1} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{1}{n} \\ & \stackrel{n}{2} \end{aligned}$

$\begin{aligned} & \text { 世 } \\ & \mathbf{N} \\ & \mathbf{N} \end{aligned}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\cdots	\square	\checkmark	\checkmark	\cdots	\square	\cdots	\checkmark	\checkmark	\square	\checkmark											
$\stackrel{\stackrel{\rightharpoonup}{c}}{\underset{ভ}{\mathbf{c}}}$	$\begin{aligned} & \stackrel{\vdots}{む} \\ & \frac{0}{\xi} \\ & \frac{1}{3} \end{aligned}$	N	N	$\stackrel{\rightharpoonup}{\hat{o}}$	＋	$\begin{gathered} -1 \\ 0 \end{gathered}$	$\left\lvert\, \begin{gathered} 0 \\ \hline \end{gathered}\right.$	∞	∞	$\begin{aligned} & \hline \text { n } \\ & \text { 10 } \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{4} \end{array}$	\bigcirc	in	お	$\stackrel{N}{N}$	$\stackrel{\rightharpoonup}{N}$	∞	\hat{o}	$\begin{array}{\|c\|} \hline \\ 0 \\ \omega \\ \infty \\ \infty \end{array}$	$\stackrel{\infty}{\infty}$	$\left\|\begin{array}{l} -1 \\ 0 \\ \infty \\ \infty \end{array}\right\|$	15	∞	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \end{aligned}$	\mathfrak{m}	$\begin{aligned} & 1 \\ & 0 \\ & \cdots \end{aligned}$	$\stackrel{0}{6}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\square}{m}$
$\left\lvert\, \begin{aligned} & \text { ح } \\ & \text { ב } \\ & \text { O} \end{aligned}\right.$						$\begin{aligned} & \overline{0} \\ & \stackrel{0}{2} \\ & \text { त्ज̃ } \\ & \text { Un } \end{aligned}$																$\stackrel{\vdots}{ \pm}$							$\begin{aligned} & \text { E } \\ & \text { 光 } \\ & \text { B } \\ & \text { 艺 } \end{aligned}$
	$\begin{aligned} & \text { 즐 } \\ & \underline{O} \end{aligned}$	$\begin{array}{\|c} \mathrm{N} \\ \mathrm{~N} \end{array}$	$\left\|\begin{array}{c} + \\ \infty_{i}^{\prime} \end{array}\right\|$	$\begin{aligned} & \infty \\ & 0 \\ & \dot{0} \end{aligned}$	N	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\sim}{\sim} \\ \underset{N}{2} \end{gathered}\right.$	$\begin{aligned} & \dot{H} \\ & \stackrel{n}{n} \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \stackrel{y}{n} \\ \mathrm{~m} \end{array} \right\rvert\,$	$\begin{aligned} & 0 \\ & \dot{0} \\ & m \end{aligned}$	$\begin{array}{\|l\|} \hline \infty \\ \infty \\ \infty \\ \hline \end{array}$	7	$\begin{array}{\|c\|} \hline \mathrm{y} \\ \mathrm{y} \end{array}$	$\begin{aligned} & \dot{+} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ \underset{H}{*} \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{*} \end{aligned}$	$\begin{array}{\|l\|} \hline \infty \\ \infty \\ + \\ + \end{array}$	$\begin{aligned} & 0 \\ & i \\ & i n \end{aligned}$	$\begin{array}{\|c\|} \infty \\ n \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & i \end{aligned}$	$\begin{array}{\|c} \hline N \\ \underset{\sim}{n} \\ i \end{array}$	$\begin{aligned} & \dot{H} \\ & \mathrm{i} \end{aligned}$	オु	$\begin{aligned} & \mathrm{N} \\ & \hat{6} \end{aligned}$	\bigcirc	$\begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned}$	n	ホ	$\stackrel{\square}{\bullet}$
	$\begin{aligned} & \underset{\sim}{c} \\ & \sqrt{0} \\ & \underset{\sim}{2} \end{aligned}$	\checkmark	N	m	－	\cdots	\bigcirc	\wedge	∞	の	$\stackrel{\square}{\square}$	$\underset{\sim}{7}$	$\stackrel{\sim}{7}$	\cdots	$\underset{4}{4}$	$\stackrel{10}{\square}$	0	$\stackrel{ }{\wedge}$	$\underset{\sim}{\infty}$	9	은	$\stackrel{\rightharpoonup}{N}$	$\underset{N}{N}$	$\underset{\sim}{n}$	$\underset{\sim}{\text { N }}$	N	$\stackrel{\ominus}{N}$	N	$\stackrel{\infty}{\sim}$

Appendix VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
29	76.6	Kenton	650	1	85.6\%	29	20.4\%	140	4.2\%	38	44.1\%	105	\$36,629	71
30	77.6	Hamilton	39	1	81.5\%	64	19.8\%	150	2.9\%	77	20.0\%	31	\$35,500	66
31	78	Butler	105	1	85.6\%	31	32.2\%	38	2.7\%	87	48.3\%	127	\$42,955	107
32	81	Hamilton	257	1	82.6\%	48	37.3\%	20	1.6\%	177	26.3\%	44	\$43,963	116
33	86.2	Hamilton	3.01	1	63.6\%	338	38.6\%	16	3.0\%	68	0.0\%	1	\$12,981	8
34	86.4	Hamilton	228	1	83.3\%	43	29.4\%	52	2.6\%	93	37.6\%	83	\$48,958	161
35	87	Butler	131	1	85.9\%	26	28.2\%	56	1.0\%	229	39.6\%	90	\$27,157	34
36	91.8	Hamilton	68	1	85.9\%	27	32.4\%	37	0.0\%	346	15.9\%	26	\$24,092	23
37	92.8	Hamilton	61	1	77.1\%	131	22.8\%	99	4.3\%	37	45.6\%	112	\$39,798	85
38	93.2	Hamilton	97	1	79.6\%	83	23.8\%	94	1.3\%	202	21.2\%	35	\$31,996	52
39	96.2	Butler	7.01	1	100.0\%	1	58.6\%	1	0.0\%	346	0.0\%	1	\$46,000	132
40	96.8	Butler	141	1	88.1\%	18	27.7\%	59	2.4\%	109	38.7\%	88	\$53,750	210
41	97.8	Hamilton	96	1	68.1\%	272	34.5\%	26	2.7\%	85	16.7\%	27	\$38,607	79
42	98	Campbell	512	1	88.6\%	16	31.1\%	46	0.0\%	346	27.4\%	49	\$27,061	33
43	98.4	Hamilton	47.02	1	75.2\%	161	56.9\%	2	2.4\%	107	46.7\%	122	\$42,031	100
44	99.6	Hamilton	103	1	83.4\%	42	49.9\%	3	0.0\%	346	37.1\%	80	\$26,250	27
45	100	Hamilton	227	1	78.4\%	102	29.1\%	54	0.9\%	238	31.6\%	62	\$29,855	44
46	100.8	Hamilton	73	1	78.0\%	109	21.3\%	121	2.0\%	136	22.5\%	37	\$42,173	101
47	101.2	Hamilton	15	1	78.5\%	100	29.8\%	50	0.0\%	346	0.0\%	1	\$14,327	9
48	101.6	Hamilton	64	1	77.5\%	117	20.9\%	128	1.9\%	149	31.0\%	58	\$33,050	56
49	102	Butler	3	1	86.7\%	22	25.2\%	78	0.8\%	260	31.8\%	64	\$40,139	86
50	103.2	Hamilton	37	1	68.1\%	274	35.6\%	23	1.4\%	191	6.8\%	17	\$14,904	11
51	107.2	Butler	122	1	84.0\%	40	35.6\%	22	5.0\%	27	71.9\%	294	\$48,227	153
51	107.2	Kenton	612	1	78.4\%	103	27.7\%	58	2.3\%	117	41.6\%	95	\$49,083	163
53	107.6	Hamilton	223.01	1	84.4\%	37	22.6\%	101	3.3\%	57	62.4\%	204	\$46,918	139
54	108.2	Hamilton	86.01	1	80.3\%	78	39.4\%	15	0.0\%	346	28.8\%	52	\$31,176	50
55	112	Kenton	651	1	69.5\%	254	25.2\%	79	2.3\%	121	30.0\%	57	\$30,911	49
56	112.6	Highland	9550	1	77.4\%	122	27.1\%	63	1.8\%	153	51.9\%	144	\$38,992	81

	$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \underset{\sim}{c} \end{aligned}$	\bigcirc	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{1}{m}$	$\overrightarrow{0}$	$\stackrel{0}{7}$	๓	$\stackrel{\square}{\sim}$	m	$\underset{\sim}{\underset{7}{7}}$	の	m	$\stackrel{\stackrel{1}{\sim}}{\sim}$	$\begin{aligned} & \text { 뇩ㅇ } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\underset{\sim}{N}$	o	\square	$\begin{aligned} & \underset{7}{7} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	の	$\begin{aligned} & \underset{G}{\text { H }} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \underset{4}{2} \end{array}$	\hat{i}	$$	$\stackrel{\infty}{\sim}$	$\begin{aligned} & \underset{\sim}{\gamma} \\ & \text { N } \end{aligned}$	$\stackrel{m}{7}$	
	$\begin{array}{\|c} \hat{\mathbf{0}} \\ \underline{\underline{I}} \end{array}$	$\begin{aligned} & \cdots \\ & \underset{\sigma}{3} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & m_{1}^{\infty} \\ & \infty \\ & \underset{+}{*} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { Ǹ } \\ & \text { N } \end{aligned}$	$\begin{gathered} \infty \\ 0 \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} o \\ m \\ \underset{\sim}{*} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { b } \\ & \text { N } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hat{1} \\ & \hat{\sim} \end{aligned}$	$\begin{aligned} & \hat{0} \\ & 0^{-} \\ & \underset{\sim}{\infty} \end{aligned}$		$$	$\begin{aligned} & \hat{N} \\ & \text { O} \\ & \text { N } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \infty_{+}^{+} \\ & + \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & m \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \text { 응 } \\ & 0 \\ & \infty \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{y}{*} \\ & \underset{\sim}{2} \end{aligned}$	n \cdots \cdots n 	$\begin{array}{\|l} \hline \underset{\sim}{N} \\ \underset{\sim}{n} \\ \hline \end{array}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{+} \end{aligned}$	10 + \vdots \vdots 4		$\begin{aligned} & \mathrm{N} \\ & \hat{0} \\ & \underset{\sim}{2} \\ & \underset{\omega}{2} \end{aligned}$	$$			$\begin{aligned} & \mathfrak{o} \\ & \cdots \\ & \infty \\ & \infty \\ & \cdots \\ & \cdots \end{aligned}$		\circ on à స क	

$\begin{array}{\|l\|} \substack{\bar{n}\\ } \end{array}$	$\underset{~}{~}$	는	$\underset{+}{\infty}$	7	$\underset{\sim}{7}$	m	$\stackrel{1}{8}$	$\stackrel{n}{n}$	$\underset{\sim}{N}$	∞	\checkmark	$\xrightarrow{\mathrm{N}}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{m}{\sim}$	$\stackrel{-1}{6}$	$\underset{N}{N}$	\checkmark	$\underset{\underset{\sim}{\infty}}{\infty}$	$\stackrel{\infty}{\sim}$	9	$\begin{array}{\|l} \infty \\ \underset{\sim}{2} \end{array}$	む	$\begin{aligned} & -1 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$		$\underset{\sim}{\mathrm{N}}$	む	$\stackrel{-}{\wedge}$
$\begin{aligned} & \text { x } \\ & \mathbf{0} \\ & \underline{\underline{I}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{m}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \stackrel{0}{2} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & 20 \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{c} \\ & \stackrel{+}{+} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \text { o̊ } \\ & \text { o. } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \dot{0} \\ & \stackrel{1}{v} \end{aligned}$		$\begin{aligned} & \text { oे } \\ & \text { ুे } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \stackrel{0}{n} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { ô } \\ & \text { ì } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{1}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{6} \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{1} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \hline \stackrel{O}{2} \\ & \underset{m}{n} \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \dot{6} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \stackrel{y}{1} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \dot{0} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { o? } \\ & \stackrel{3}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \text { no } \\ & \cdots \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { ¢ु } \end{aligned}$	$\begin{aligned} & 0_{0} \\ & \stackrel{?}{7} \\ & \stackrel{1}{2} \end{aligned}$	

Crowding

	$\begin{aligned} & \frac{0}{E} \\ & \frac{ \pm}{0} \\ & \frac{\sigma}{\partial} \end{aligned}$	\checkmark	\square	\checkmark	\square	\checkmark	\square	\checkmark	\square	\checkmark	\square	\checkmark	∇	\checkmark	\checkmark	\checkmark	$-$	r	\checkmark	\checkmark	\checkmark								
		\mid	$\hat{\sigma}$	∞_{m}^{∞}	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \dot{0} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \dot{j} \\ & \dot{0} \\ & \underset{N}{N} \end{aligned}$	$\underset{\sim}{n} \mid$	$\begin{aligned} & 0 \\ & m \\ & m \end{aligned}$	\|	$\begin{aligned} & \dot{J} \\ & \mathrm{j} \\ & \mathrm{j} \\ & \mathrm{H} \end{aligned}$	$\underset{F}{7}$	の	$$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\xrightarrow[N]{\mathrm{N}}$	$\begin{aligned} & \mathrm{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{N} \end{aligned}$	\dot{m}	$\begin{array}{\|c} \stackrel{1}{2} \\ \end{array}$	$\begin{aligned} & \infty \\ & \underset{子}{7} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{C}}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \\ & \mathrm{~m} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ i \\ \underset{N}{n} \end{array}\right\|$	$\underset{6}{\ddagger}$	$\begin{aligned} & -1 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\stackrel{\sim}{N}$	$\begin{aligned} & 9 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	N
$\left.\begin{aligned} & \lambda \\ & \stackrel{\lambda}{2} \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$				$\begin{aligned} & \text { 틍 } \\ & \text { 光 } \\ & \text { 芢 } \end{aligned}$		$\begin{aligned} & \text { 틍 } \\ & \text { 光 } \\ & \text { 芢 } \end{aligned}$					$\frac{\dot{む}}{\underset{\sim}{\leftrightarrows}}$	$\begin{aligned} & \text { 틍 } \\ & \text { 光 } \\ & \text { 茳 } \end{aligned}$	$\frac{0}{3}$	$\left\|\begin{array}{c} \tilde{0} \\ \text { dun } \\ 3 \end{array}\right\|$							$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$			$$	$\begin{aligned} & \stackrel{\rightharpoonup}{\pi} \\ & \tilde{\pi} \\ & \text { U } \end{aligned}$				
	$\begin{aligned} & \text { 자́ } \\ & \mathbf{0} \\ & \hline \end{aligned}$	$\begin{gathered} \infty \\ \underset{~}{\infty} \\ \underset{\sim}{7} \end{gathered}$	$\begin{aligned} & N \\ & \stackrel{N}{i} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \infty \\ & 1 \\ & \cdots \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & 6 \\ & \underset{7}{\prime} \end{aligned}$	$\begin{aligned} & 0 \\ & \cdots \\ & 7 \end{aligned}$	$\begin{aligned} & N \\ & v_{0} \\ & \underset{\sim}{-} \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & 1 \\ & \hline \end{aligned}$	$\begin{gathered} N \\ \infty \\ \underset{\sim}{c} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \underset{F}{7} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \omega_{7} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & n \\ & \underset{i}{i} \\ & \underset{i}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\dot{1}} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\mathrm{N}}{ } \\ & \underset{\mathrm{~N}}{ } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\left\lvert\, \begin{gathered} \stackrel{1}{\mathrm{~N}} \\ \underset{ }{2} \end{gathered}\right.$	$$	$\left\lvert\, \begin{gathered} \underset{N}{0} \\ \underset{\sim}{v} \\ \underset{\sim}{2} \end{gathered}\right.$	$\underset{\underset{\sim}{N}}{\underset{\sim}{n}}$	$\begin{aligned} & 0 \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} N \\ \underset{\sim}{\infty} \\ \underset{\sim}{c} \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{\substack{\mathrm{N}}}{ }$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	+ \sim \sim \sim \sim
		$\hat{\mathrm{L}}$	∞	ف⿵	0	\bigcirc	\mathfrak{N}	\mathfrak{m}	\mathfrak{m}	6	0	人	∞	∞	\bigcirc	－	N	\mathfrak{n}	$\underset{\sim}{\star}$	N	$\begin{array}{\|l\|} \hline 6 \\ 1 \end{array}$	\hat{N}	∞	9	∞	∞	$\underset{\infty}{\infty}$	∞	\pm

APPENDIX VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
85	129.6	Butler	118.01	1	79.4\%	87	17.4\%	188	4.7\%	29	63.1\%	209	\$46,350	135
86	131.2	Campbell	502	1	71.6\%	220	33.1\%	34	0.0\%	346	6.7\%	16	\$28,846	40
87	131.8	Brown	9516	1	72.5\%	205	25.1\%	80	2.3\%	120	52.9\%	149	\$42,536	105
88	133.2	Brown	9518	1	80.7\%	75	24.4\%	91	0.9\%	244	51.9\%	143	\$43,472	113
89	133.6	Hamilton	100.01	1	74.4\%	173	19.2\%	157	2.6\%	96	45.6\%	111	\$45,909	131
90	135.8	Bracken	9501	1	77.1\%	130	29.2\%	53	0.0\%	346	43.2\%	102	\$30,809	48
91	136.4	Hamilton	62.01	1	72.3\%	209	20.9\%	132	1.8\%	154	40.4\%	91	\$41,373	96
92	136.6	Hamilton	22	1	68.8\%	265	26.1\%	67	1.1\%	216	33.1\%	65	\$36,500	70
93	137.2	Gallatin	9601	1	82.4\%	51	27.0\%	65	1.0\%	228	61.6\%	194	\$47,714	148
93	137.2	Grant	9804	1	73.7\%	187	25.0\%	82	1.3\%	205	46.1\%	117	\$41,316	95
93	137.2	Kenton	669	1	79.9\%	82	21.1\%	126	3.2\%	63	66.5\%	243	\$50,139	172
96	137.4	Butler	123	1	84.2\%	38	18.3\%	165	2.0\%	141	61.7\%	196	\$47,542	147
97	137.6	Boone	703.01	1	81.4\%	65	21.5\%	117	1.1\%	223	61.7\%	195	\$40,407	88
98	139	Butler	132	1	74.9\%	168	22.4\%	107	0.5\%	306	33.4\%	68	\$30,388	46
99	140.4	Hamilton	89	1	85.6\%	30	14.6\%	248	0.0\%	346	29.6\%	56	\$23,750	22
100	140.6	Warren	305.01	1	76.1\%	142	20.5\%	138	1.9\%	145	53.3\%	152	\$45,313	126
101	141.2	Butler	130	1	79.3\%	89	21.5\%	115	0.0\%	346	45.8\%	114	\$28,971	42
102	142.2	Kenton	607	1	67.2\%	287	27.8\%	57	1.2\%	209	38.0\%	84	\$37,083	74
103	143	Dearborn	803	1	81.3\%	66	24.9\%	83	2.7\%	86	71.7\%	293	\$51,100	187
104	144	Adams	9904	1	77.8\%	115	25.4\%	77	0.6\%	297	48.3\%	128	\$42,295	103
104	144	Hamilton	99.02	1	74.5\%	171	15.0\%	237	1.7\%	166	31.4\%	59	\$40,288	87
106	144.6	Hamilton	74	1	75.2\%	163	10.7\%	336	2.2\%	129	4.9\%	15	\$38,882	80
106	144.6	Kenton	616	1	59.8\%	389	31.8\%	39	2.2\%	123	51.0\%	141	\$26,563	31
108	145.2	Hamilton	83	1	70.1\%	245	20.7\%	135	3.9\%	44	46.7\%	121	\$50,734	181
109	145.4	Clermont	420	1	82.1\%	54	22.2\%	110	1.4\%	192	62.2\%	202	\$49,965	169
110	146.8	Hamilton	17	1	61.1\%	368	37.8\%	17	0.0\%	346	0.0\%	1	\$7,434	2
111	147	Highland	9545	1	78.3\%	106	22.9\%	97	2.3\%	112	75.4\%	318	\$42,179	102
112	147.2	Butler	1	1	82.0\%	55	17.8\%	178	2.4\%	106	58.7\%	179	\$54,492	218

Family Income	
Index	Rank
$\$ 54,289$	216
$\$ 39,750$	83
$\$ 48,281$	154
$\$ 50,439$	176
$\$ 48,480$	157
$\$ 40,746$	89
$\$ 44,857$	122
$\$ 41,625$	98
$\$ 44,803$	121
$\$ 35,139$	64
$\$ 49,821$	168
$\$ 49,079$	162
$\$ 49,135$	164
$\$ 47,366$	144
$\$ 35,130$	63
$\$ 38,182$	77
$\$ 46,447$	136
$\$ 49,625$	167
$\$ 36,944$	73
$\$ 42,476$	104
$\$ 51,167$	188
$\$ 45,250$	125
$\$ 45,809$	130
$\$ 12,089$	7
$\$ 48,316$	156
$\$ 47,059$	143
$\$ 46,964$	140
$\$ 39,786$	84

$\underline{\underline{0}}$	$\begin{aligned} & \underset{\substack{\underset{\sim}{c} \\ \underset{\sim}{c}}}{ } \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{7} \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{O} \\ \underset{\sim}{n} \end{array}$	$\underset{m}{7}$	$\stackrel{1}{\sim}$	$\begin{aligned} & \hline \infty \\ & \infty \\ & \sim \\ & \hline \end{aligned}$	$\stackrel{N}{N}$	N	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \hline \end{aligned}$	$\underset{\sim}{\underset{N}{N}}$	$\begin{array}{\|l} \hline \underset{ন}{-} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \\ \underset{N}{\infty} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \infty \\ \hline \end{array}$	$\begin{array}{\|c} \underset{\sim}{N} \\ \hline \end{array}$	$\begin{array}{\|c} \underset{m}{2} \\ \hline \end{array}$	$$	$\begin{array}{\|l} \hline 0 \\ 0 \\ \hline \end{array}$	$$	－	\bigcirc	$\overrightarrow{0}$	$\begin{array}{\|l} \hline \infty \\ 0 \\ \sim \end{array}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { Lo } \\ & \text { m } \end{aligned}$	$\underset{\sim}{\sigma}$	$\underset{\sim}{\mathrm{N}}$	$\begin{array}{\|l} \hline 0 \\ \mathrm{M} \\ \hline \end{array}$	안	へ
	$\begin{aligned} & \text { 즐 } \\ & \underline{0} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \hat{o} \\ & 0 \\ & \dot{0} \\ & + \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{4} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { j} \\ & \text { f } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & 0 \\ & \mathrm{o} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { m } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{6} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & i \end{aligned}$	$\begin{aligned} & \underset{子}{\circ} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \infty \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { ம? } \end{aligned}$		$\begin{array}{\|l} \hline \hat{0} \\ \hat{0} \\ \hat{b} \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \infty \\ & m \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{0}{2} \\ & m \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \underset{\sim}{\infty} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \stackrel{1}{2} \\ & \hat{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{\circ}{n} \\ \text { ñ } \\ \hline \end{array}$	$\begin{aligned} & \text { oे } \\ & \underset{\infty}{\circ} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ \infty \end{array}$	$\begin{aligned} & \hat{0} \\ & \hat{0} \\ & \hat{N} \\ & \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \\ & \end{aligned}$	
	$\begin{aligned} & \underset{\sim}{c} \\ & \underset{\sim}{c} \\ & \hline \end{aligned}$	¢	$\stackrel{1}{7}$	$\stackrel{7}{n}$	$\begin{gathered} \mathrm{m} \\ \underset{\sim}{n} \end{gathered}$	$\stackrel{n}{N} \mid$	$\begin{aligned} & 0 \\ & \text { o } \\ & \text { m } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { o } \\ & \text { m } \end{aligned}$	$\stackrel{\rightharpoonup}{m}$	$\underset{\underset{\sim}{\infty}}{\underset{\sim}{\infty}}$	$\begin{aligned} & \hat{N} \\ & \underset{N}{2} \end{aligned}$	人	$\stackrel{\text { n }}{\substack{2}}$	$\underset{~}{\underset{ }{-}}$	$\begin{array}{\|l} \hline- \\ \underset{-}{2} \end{array}$	$\underset{\sim}{N}$	$\stackrel{\stackrel{1}{n}}{N}$	$\begin{aligned} & \text { n } \\ & \text { n } \end{aligned}$	∞	$\begin{aligned} & 0 \\ & \infty \\ & N \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \text { + } \end{aligned}$	$\begin{aligned} & 10 \\ & \underset{7}{7} \end{aligned}$	네	$\stackrel{\infty}{\sim}$	$\begin{array}{\|l} \hline \mathbf{o} \\ \text { m } \end{array}$	m	$\underset{\mathrm{N}}{\underset{\mathrm{~N}}{2}}$	$\begin{aligned} & 0 \\ & \text { a } \\ & \cdots \end{aligned}$	$\stackrel{-1}{-1}$
\bar{y}	$\begin{aligned} & \text { 즐 } \\ & \hline \underline{C} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{7}}{\underset{\sim}{4}}$	$\begin{aligned} & o \\ & \infty \\ & \dot{m} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { è } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \sigma_{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { ion } \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \underset{\gamma}{2} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{0}{1} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{o} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & \text { ol } \\ & \text { N} \\ & \text { N } \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{\circ}{0} \\ \mathrm{~m} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \text { ol } \\ & \text { n } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { m } \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l} \stackrel{\circ}{4} \\ \underset{子}{2} \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{+} \\ & i \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \stackrel{0}{\mathrm{~N}} \end{aligned}$
	$\underset{\sim}{\underset{C}{c}}$	$\underset{\underset{\sim}{\circ}}{\stackrel{0}{2}}$	$\begin{array}{\|l} \underset{\sim}{N} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{m} \\ & \end{aligned}$	$\stackrel{\underset{7}{7}}{7}$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{7}{7}$	$\begin{aligned} & 0 \\ & \underset{\sim}{7} \end{aligned}$	∞	$\stackrel{N}{\wedge}$	$\stackrel{i}{N}$	$\begin{array}{\|l} \hline \hat{0} \\ 1 \end{array}$	$\begin{array}{\|l\|} \stackrel{N}{N} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\boldsymbol{N}} \end{aligned}$	$\stackrel{\stackrel{1}{\underset{\sim}{4}}}{\square}$	∞_{0}^{∞}	N	N	$\begin{array}{\|l\|} \hline 0 \\ N \\ N \end{array}$	تु	$\stackrel{\sim}{7}$	$\underset{\underset{\sim}{*}}{\underset{\sim}{*}}$	$\begin{aligned} & \text { n } \\ & \text { N } \end{aligned}$	\bigcirc	\cdots	$\begin{array}{\|c} m \\ 0 \\ \end{array}$	さ	$\begin{array}{\|c\|} N \\ N \end{array}$	n
굴		$\begin{aligned} & \text { oे } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 00 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{7} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{o}} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & o \\ & 0 \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{2} \\ & \hat{n} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \mathrm{c} \\ & \text { 认े} \\ & \text { ஸn} \\ & \text { N } \end{aligned}$	$\begin{aligned} & { }_{2} \\ & \underset{\sim}{i} \\ & \underset{N}{2} \end{aligned}$	$\begin{gathered} \hline 0 \\ \stackrel{\rightharpoonup}{n} \\ \infty \\ \end{gathered}$	$\begin{gathered} 0 \\ \stackrel{0}{n} \\ \underset{i}{-} \end{gathered}$	$\begin{aligned} & \hline \stackrel{\circ}{0} \\ & \hat{n} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \text { o? } \\ & \underset{\sim}{2} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \dot{0} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \text { ô} \\ & \mathfrak{N} \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \underset{\sim}{+} \\ & \underset{\sim}{n} \end{aligned}$	$$	$\begin{array}{\|c} \hline 0 \\ 0 \\ \vdots \\ \mathrm{~N} \end{array}$	$\begin{aligned} & \hline \stackrel{\circ}{2} \\ & m \\ & \stackrel{\rightharpoonup}{m} \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{?}{n} \\ \vdots \\ N \end{gathered}$		$\begin{array}{\|c} \hline 0 \\ 0 \\ \vdots \\ \mathrm{~N} \end{array}$	$\begin{array}{\|c} \hline \stackrel{0}{2} \\ \mathbf{o} \\ \mathrm{~m} \\ \hline \end{array}$	$\begin{aligned} & \hline{ }^{\circ} \\ & \hat{0} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \hline ⿳ 亠 口 冋 口 \\ & \hat{N} \\ & \text { Ni} \\ & \text { N } \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { ஸi } \\ & \text { Ni } \end{aligned}$

SES		County	Census Tract	
Rank	Index		Number	Quartile
113	147.4	Clermont	416	1
114	148.8	Hamilton	216.02	1
115	149.4	Clinton	9943	1
116	150.6	Hamilton	252	1
117	151.2	Grant	9802	1
118	151.6	Butler	139	1
119	152	Kenton	614	1
120	152.2	Kenton	603	1
121	153	Pendleton	9903	1
122	155.2	Kenton	610	1
123	155.6	Pendleton	9902	1
124	156	Boone	702	1
125	156.2	Hamilton	217.02	1
126	157.2	Clermont	402.02	1
127	157.6	Adams	9906	1
127	157.6	Clermont	411.02	1
129	158.8	Bracken	9503	1
130	159.4	Hamilton	58	1
131	159.8	Hamilton	44	2
132	160.6	Campbell	506	2
133	161.6	Clermont	417.01	2
133	161.6	Hamilton	29	2
135	161.8	Adams	9901	2
135	161.8	Hamilton	3.02	2
137	162.2	Butler	121	2
137	162.2	Franklin	9699	2
139	163.2	Hamilton	54	2
140	165.4	Adams	9902	2

APPENDIX VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
141	165.8	Hamilton	207.62	2	75.5\%	152	10.8\%	333	2.2\%	127	42.9\%	100	\$44,176	117
142	166	Franklin	9697	2	79.4\%	86	19.0\%	159	2.0\%	138	76.1\%	323	\$45,156	124
143	167	Hamilton	229	2	86.5\%	23	22.3\%	108	0.9\%	236	71.2\%	289	\$50,500	179
144	167.6	Hamilton	33	2	73.3\%	193	15.2\%	230	0.0\%	346	25.8\%	43	\$25,868	26
145	168.8	Grant	9803	2	75.4\%	155	20.4\%	141	1.4\%	196	68.3\%	262	\$41,023	90
146	169.8	Hamilton	91	2	60.2\%	382	47.8\%	4	0.0\%	346	41.9\%	97	\$22,784	20
147	172.2	Ripley	9686	2	86.4\%	24	21.0\%	127	0.7\%	278	70.5\%	282	\$47,853	150
148	172.4	Switzerland	9658	2	75.9\%	147	14.7\%	245	2.2\%	130	56.9\%	170	\$50,000	170
149	173.8	Pendleton	9901	2	72.6\%	204	20.1\%	146	4.3\%	36	62.0\%	200	\$62,546	283
150	175.6	Hamilton	109	2	80.1\%	79	16.0\%	211	2.4\%	103	79.1\%	367	\$44,400	118
151	175.8	Highland	9547	2	84.7\%	35	20.5\%	139	1.2\%	207	74.8\%	313	\$50,951	185
152	176.2	Clinton	9946	2	72.1\%	214	17.0\%	195	2.6\%	98	74.7\%	312	\$34,893	62
153	179.8	Butler	128	2	60.9\%	371	35.1\%	24	0.0\%	346	50.7\%	140	\$20,188	18
154	180	Hamilton	207.41	2	77.9\%	111	15.9\%	216	0.0\%	346	37.5\%	82	\$47,384	145
155	180.2	Clinton	9947	2	73.1\%	195	14.2\%	253	3.5\%	54	61.9\%	199	\$52,649	200
156	180.4	Adams	9903	2	73.6\%	188	24.7\%	84	2.0\%	134	77.9\%	354	\$47,036	142
157	182.8	Warren	314	2	73.2\%	194	15.6\%	223	0.9\%	241	46.8\%	123	\$46,059	133
158	183.4	Brown	9517	2	75.9\%	146	22.8\%	98	0.0\%	346	63.1\%	212	\$43,942	115
159	184.4	Hamilton	218.02	2	76.9\%	133	16.1\%	210	1.7\%	162	65.4\%	231	\$51,045	186
160	185.6	Hamilton	4	2	48.1\%	469	20.0\%	147	2.8\%	81	17.9\%	29	\$53,115	202
161	186.6	Butler	2	2	77.3\%	126	18.7\%	161	0.0\%	346	58.1\%	173	\$45,344	127
162	187	Clinton	9949	2	80.8\%	73	15.0\%	239	0.7\%	273	63.1\%	213	\$46,458	137
163	187.4	Ripley	9687	2	77.7\%	116	18.0\%	173	3.7\%	49	77.2\%	344	\$59,313	255
164	188.25	Highland	9548	2	76.5\%	138	17.5\%	187	0.0\%	346	50.4\%	135	\$39,625	82
165	188.4	Hamilton	8	2	54.0\%	430	22.5\%	105	0.0\%	346	0.0\%	1	\$34,167	60
166	189.6	Hamilton	55	2	73.0\%	199	14.0\%	259	0.7\%	281	51.2\%	142	\$35,530	67
167	191	Butler	109.01	2	77.4\%	121	15.9\%	213	0.6\%	296	50.5\%	136	\$51,364	189
168	191.4	Kenton	657	2	71.8\%	216	24.1\%	93	3.1\%	64	81.9\%	388	\$52,000	196

Family Income	
Index	Rank
$\$ 43,380$	112
$\$ 51,716$	194
$\$ 50,089$	171
$\$ 55,481$	227
$\$ 46,071$	134
$\$ 46,583$	138
$\$ 55,714$	228
$\$ 61,477$	275
$\$ 18,627$	15
$\$ 50,483$	178
$\$ 54,934$	220
$\$ 55,433$	225
$\$ 61,193$	273
$\$ 49,487$	165
$\$ 43,316$	109
$\$ 60,769$	266
$\$ 50,777$	182
$\$ 42,984$	108
$\$ 53,367$	205
$\$ 32,780$	55
$\$ 55,360$	224
$\$ 54,435$	217
$\$ 28,750$	39
$\$ 41,042$	91
$\$ 62,464$	282
$\$ 91,845$	452
$\$ 58,371$	247
$\$ 61,078$	271
$\$$	

$\stackrel{N}{5}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{N}} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { m } \end{aligned}$	$\begin{aligned} & + \\ & \infty \\ & \cdots \end{aligned}$	N	$\begin{aligned} & \text { in } \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \infty \\ & \underset{1}{n} \end{aligned}$	\checkmark	$\stackrel{N}{N}$	$\begin{aligned} & \mathbf{o} \\ & \text { n } \end{aligned}$	${\underset{N}{N}}_{\infty}$	$\begin{array}{\|l} \hline 0 \\ \stackrel{\circ}{4} \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|l} \hline 8 \\ 8 \end{array}$	$\begin{array}{\|l} \hline \infty \\ \\ \hline \end{array}$	$\begin{array}{\|c} \underset{\sim}{\mathrm{N}} \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ \hline \end{array}$	$\begin{array}{\|c} \stackrel{\sim}{\mathrm{N}} \\ \hline \end{array}$	ω_{∞}^{∞}	$\stackrel{O}{\mathrm{~N}}$	$\stackrel{+}{4}$	$\stackrel{N}{\mathbf{m}}$	$\begin{array}{\|c} \text { n } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \infty \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 0 \\ \hline 10 \\ \hline \end{array}$	$\begin{array}{\|c} \underset{N}{N} \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{N} \\ \mathbf{N} \end{array}$	$$	$\stackrel{\underset{N}{N}}{\underset{N}{\prime}}$
$\frac{\overline{\bar{E}}}{\bar{\pi}}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { N} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \sigma_{0}^{0} \\ & 0_{0} \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overbrace{0} \\ & \stackrel{n}{i} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \hat{0} \\ & \hat{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{0} \\ & \dot{\infty} \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{\circ}{2} \\ \underset{\sim}{n} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \vdots \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \underset{\infty}{1} \\ & \hline \end{aligned}$		$\begin{array}{\|l} \hline \stackrel{\circ}{2} \\ \stackrel{y}{c} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \mathrm{o} \\ & \mathrm{o} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{7} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & \underset{0}{0} \\ & \underset{m}{0} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ 0 \\ \underset{N}{N} \\ \hline \end{array}$		$\begin{aligned} & \text { oे } \\ & m \\ & \infty \\ & i n \end{aligned}$	1 0 0 0 - -1	$\begin{aligned} & \text { oे } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \hat{0} \\ 10 \\ 0 \end{array}$	$\begin{array}{\|l} \hline 0 \\ \text { oे } \\ \text { qu } \end{array}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{9} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$
	$\begin{aligned} & \underset{\sim}{\underset{\Gamma}{\Gamma}} \\ & \underset{\sim}{n} \end{aligned}$	7	$\begin{aligned} & 0 \\ & + \\ & m \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{+}{2} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 0 \\ m \end{array} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{m} \end{aligned}$	$\begin{aligned} & \underset{\sim}{J} \\ & \hline \end{aligned}$	$\underset{\sim}{m}$	$\begin{aligned} & \mathrm{o} \\ & \text { + } \\ & \hline \end{aligned}$	$\underset{\sim}{\underset{N}{N}}$	$\vec{\sigma}$	人	!	$\underset{\sim}{\underset{\sim}{*}}$	$\begin{array}{\|l} \hline 0 \\ + \\ m \end{array}$	$\begin{aligned} & 0 \\ & \text { o } \\ & \text { m } \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \text { m } \end{array}$	$\begin{aligned} & \text { Nㅜㅇ } \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \mathrm{o} \\ & \mathbf{m} \end{aligned}$	$\left\|\begin{array}{c} -1 \\ \hat{N} \end{array}\right\|$	$\begin{aligned} & \infty \\ & \underset{m}{m} \end{aligned}$	$\begin{array}{\|l} \hline \mathbf{o} \\ \frac{1}{2} \end{array}$	¢	$\stackrel{\underset{\sim}{\underset{~}{4}}}{ }$	$\begin{aligned} & \mathrm{o} \\ & \mathbf{m} \end{aligned}$	$\stackrel{\infty}{\substack{n \\ \sim}}$	$\stackrel{-7}{\square}$
\bar{y}	$\begin{aligned} & \text { 중 } \\ & \text { 응 } \end{aligned}$	$\begin{aligned} & \text { Oे } \\ & \dot{+} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\circ}{\mathrm{m}} \underset{\sim}{i}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \text { oे } \\ \text { oे } \\ i \end{gathered}$	$\begin{aligned} & \stackrel{\ominus}{i} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \hline \stackrel{\circ}{\mathrm{N}} \\ & \mathrm{~N} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{-} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ \text { oे } \\ \cdots \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{7} \\ & \underset{4}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { oे } \\ & \vdots \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ̊웅 } \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$
	交	$\begin{aligned} & \hat{\alpha} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & m \\ & \underset{\sim}{n} \end{aligned}$	$\stackrel{-1}{N}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\mathrm{~N}}{1} \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{\sim} \\ \hline \end{array}$	$\underset{\sim}{\infty}$	$\begin{array}{\|c} \mathrm{N} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & n \\ & \underset{N}{n} \end{aligned}$	$\stackrel{\text { n }}{\text { n }}$	$\stackrel{0}{n}$	$\begin{array}{\|c} N \\ N \end{array}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\underset{\underset{\sim}{N}}{\underset{\sim}{2}}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$$	\bigcirc	$\stackrel{\square}{\infty}$	$\stackrel{-}{\lambda}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$$	ㄴㅇ	$\underset{\sim}{\mathrm{N}}$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline \infty \\ 0 \\ \sim \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	の	$$	m
굴		$\begin{aligned} & \text { oे } \\ & \dot{0} \\ & \dot{-} \end{aligned}$	$\stackrel{\substack{0 \\ \underset{-1}{2} \\ \hline}}{ }$	$\begin{aligned} & 0_{0} \\ & \underset{\sim}{4} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{1}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { ì } \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & 0 \\ & 0 \\ & \cdots \end{aligned}$	$\begin{aligned} & 0^{0} \\ & \vec{n} \\ & \stackrel{1}{7} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \underset{\infty}{\circ} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { Nे } \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ \stackrel{0}{n} \\ n \\ n \end{array}$	$\begin{aligned} & \text { O} \\ & \text { o } \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{\circ}{n} \\ \text { n } \\ \stackrel{\rightharpoonup}{\mathrm{N}} \end{array}$	$\begin{aligned} & \text { ô } \\ & \text { of } \\ & \underset{-}{2} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \text { i? } \\ 0 \\ 0 \end{array}$		$\begin{aligned} & \mathrm{o} \\ & \stackrel{?}{2} \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{-} \\ & \underset{-1}{ } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \text { io } \\ & \text { in } \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\infty}{0} \end{aligned}$	$\begin{aligned} & \hline \stackrel{0}{0} \\ & \dot{1} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { b } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \underset{N}{n} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \infty \\ & \infty \\ & n \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ 0 \\ 0 \\ 1 \end{array}$	$\begin{aligned} & \hline{ }^{\circ} \\ & \infty \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\lambda} \\ & \stackrel{1}{\lambda} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \stackrel{3}{n} \\ & \text { j} \end{aligned}$

SES		County	Census Tract	
Rank	Index		Number	Quartile
169	193	Campbell	511.01	2
170	193.2	Dearborn	805	2
171	194	Hamilton	219	2
172	194.2	Hamilton	232.01	2
173	195	Highland	9549	2
174	195.4	Hamilton	108	2
175	195.6	Dearborn	807	2
176	196.8	Hamilton	258	2
177	197	Hamilton	26	2
178	197.4	Hamilton	261.02	2
179	198.6	Ripley	9688	2
180	200	Clinton	9948	2
181	201	Clinton	9950	2
181	201	Hamilton	217.01	2
183	201.2	Butler	134	2
184	201.6	Hamilton	249.01	2
185	202	Butler	101.01	2
185	202	Hamilton	82.02	2
187	202.2	Highland	9544	2
188	202.4	Hamilton	40	2
189	202.6	Switzerland	9657	2
190	203.4	Warren	321	2
191	203.8	Butler	129	2
192	204.2	Hamilton	41	2
192	204.2	Hamilton	204.01	2
194	204.8	Butler	7.02	2
194	204.8	Hamilton	261.01	2
196	205	Butler	109.08	2

Appendix VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
197	205.2	Adams	9905	2	70.6\%	238	27.1\%	61	0.2\%	339	75.6\%	319	\$35,962	69
198	205.4	Kenton	637.02	2	79.9\%	81	21.2\%	123	2.1\%	131	93.2\%	495	\$52,038	197
199	205.8	Brown	9514	2	74.1\%	179	18.3\%	168	1.3\%	200	67.5\%	250	\$56,000	232
199	205.8	Hamilton	234	2	60.3\%	380	14.1\%	257	1.8\%	155	45.4\%	109	\$45,636	128
201	206.6	Hamilton	216.03	2	72.9\%	200	16.2\%	207	2.9\%	76	63.4\%	215	\$68,442	335
202	207.6	Butler	113	2	71.6\%	219	17.9\%	175	1.4\%	195	67.5\%	251	\$52,250	198
203	208.4	Boone	703.04	2	81.1\%	69	31.2\%	43	0.0\%	346	77.9\%	355	\$55,795	229
204	210.4	Brown	9512	2	76.6\%	136	21.2\%	122	2.0\%	139	80.7\%	377	\$62,000	278
205	212	Butler	109.04	2	73.9\%	184	18.2\%	169	0.0\%	346	59.8\%	187	\$50,313	174
205	212	Warren	301.02	2	81.6\%	63	23.1\%	96	0.0\%	346	74.5\%	310	\$57,679	245
207	215.8	Hamilton	60	2	65.4\%	319	17.0\%	196	1.4\%	193	58.5\%	178	\$51,697	193
208	216	Brown	9513	2	75.7\%	150	19.3\%	156	0.8\%	261	73.9\%	307	\$53,412	206
209	216.4	Warren	315	2	72.5\%	207	13.6\%	270	2.5\%	99	60.6\%	191	\$66,113	315
210	217	Butler	12	2	72.2\%	213	15.5\%	224	0.9\%	243	56.6\%	169	\$56,434	236
210	217	Hamilton	215.06	2	70.8\%	234	16.8\%	199	0.0\%	346	34.6\%	75	\$55,893	231
212	217.2	Ripley	9685	2	72.7\%	203	18.4\%	163	0.9\%	234	64.6\%	225	\$60,100	261
213	217.6	Boone	705.02	2	79.1\%	92	17.5\%	186	3.8\%	46	85.7\%	431	\$67,589	333
214	218	Clermont	417.02	2	67.5\%	281	18.0\%	174	1.5\%	182	55.1\%	160	\$63,919	293
214	218	Hamilton	78	2	62.7\%	349	17.2\%	191	0.8\%	249	45.4\%	110	\$51,571	191
216	218.4	Kenton	656	2	71.6\%	221	13.6\%	271	0.0\%	346	41.9\%	96	\$48,511	158
217	219.8	Hamilton	105	2	80.4\%	76	15.9\%	215	0.0\%	346	56.6\%	168	\$63,922	294
217	219.8	Highland	9551	2	78.5\%	98	19.5\%	155	0.9\%	240	87.2\%	447	\$48,685	159
219	221.4	Hamilton	27	2	67.0\%	296	17.7\%	180	0.0\%	346	68.2\%	260	\$25,333	25
220	221.6	Kenton	642	2	75.3\%	157	15.6\%	222	3.9\%	43	85.8\%	432	\$59,174	254
221	222.2	Hamilton	32	2	45.2\%	479	1.6\%	505	6.1\%	19	21.9\%	36	\$36,875	72
222	222.4	Warren	301.01	2	78.0\%	110	15.1\%	233	1.6\%	172	71.6\%	292	\$65,313	305
223	222.6	Hamilton	10	2	45.6\%	475	14.7\%	244	0.0\%	346	14.4\%	24	\$24,643	24
224	222.8	Hamilton	81	2	60.6\%	375	24.4\%	89	0.7\%	271	45.9\%	115	\$60,549	264

	$\begin{aligned} & \underset{\substack{\underset{\sim}{c} \\ \underset{\sim}{c}}}{ } \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\infty}$	$\begin{gathered} \text { N } \\ \text { N } \end{gathered}$	$\stackrel{n}{\sim}$	$\stackrel{a}{n}$	\sim_{N}^{∞}	$\begin{aligned} & \stackrel{0}{N} \\ & \underset{m}{2} \end{aligned}$	$\stackrel{\sim}{\sim}$	$\stackrel{N}{N}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\sim}$	σ	$\begin{aligned} & \bullet \\ & \underset{N}{N} \end{aligned}$	$\stackrel{n}{\sim}$	$\underset{\mathrm{N}}{\mathrm{~N}}$	$\underset{\sim}{n}$	$\begin{aligned} & 0 \\ & N \end{aligned}$	$\underset{\square}{7}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{N}{N} \end{aligned}$	$\stackrel{\otimes}{\infty}$	$\begin{aligned} & \underset{\sim}{N} \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{N} \\ \hline \end{array}$	$\stackrel{\underset{N}{N}}{ }$	เฺ	$\begin{aligned} & 6 \\ & m \end{aligned}$	$\begin{array}{\|c} 0 \\ \underset{1}{0} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{0}{N} \end{aligned}$	ले
	$\stackrel{\text { © }}{\mathbf{I}}$	$\begin{aligned} & 7 \\ & 7 \\ & \cdots \\ & \hdashline \end{aligned}$	$\begin{aligned} & \text { N} \\ & n^{2} \\ & n^{2} \end{aligned}$	$\begin{aligned} & \stackrel{2}{2} \\ & \stackrel{2}{0} \\ & \stackrel{2}{6} \end{aligned}$	$$	$$	$\begin{aligned} & 0 \\ & \hat{0} \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & o \\ & \infty \\ & 0^{0} \\ & \infty \end{aligned}$	$\begin{aligned} & -i \\ & 0 \\ & \sigma^{2} \\ & \leftrightarrow \\ & \leftrightarrow \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { on } \\ & \text { No } \\ & \text { b } \end{aligned}$	$$	$\begin{aligned} & \text { io } \\ & \text { on } \\ & \text { in } \\ & \forall \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & - \\ & \underset{-}{\infty} \end{aligned}$	$\begin{gathered} \stackrel{L}{7} \\ \underset{y}{2} \\ \stackrel{n}{6} \end{gathered}$		$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & 6 \\ & 6 \\ & \leftrightarrow \end{aligned}$	$\begin{aligned} & \stackrel{a}{7} \\ & m \\ & 0 \\ & \bullet \\ & \bullet \end{aligned}$	N $\underset{y}{2}$ 8 6	$\begin{aligned} & \text { n } \\ & m \\ & m \\ & \underset{\sim}{6} \end{aligned}$	$\begin{aligned} & \hat{1} \\ & \hat{6} \\ & \hat{0} \\ & \infty \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{H}{n} \\ & \leftrightarrow \end{aligned}$	8 0 0 0^{2} \leftrightarrow	$\left\lvert\, \begin{aligned} & \hat{N} \\ & \\ & \hat{N} \\ & \bigoplus \end{aligned}\right.$		$\begin{aligned} & 0 \\ & \text { N } \\ & \text { N } \\ & 0 \\ & 0 \\ & 6 \end{aligned}$	$\begin{aligned} & 0 \\ & \tilde{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$$	

	$\stackrel{\underset{N}{N}}{\stackrel{1}{2}}$	-	$\begin{aligned} & \hline n \\ & m \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\lambda} \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & N \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 9 \\ m \end{array} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	m	$\begin{aligned} & \text { on } \\ & \infty \\ & \mathrm{m} \end{aligned}$	$\begin{aligned} & \hline \infty \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \mathbf{O} \end{aligned}$	\square	$\begin{aligned} & \hline \text { P } \\ & \hline \mathrm{m} \end{aligned}$	ก	$\begin{aligned} & \dot{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|c} N \\ \sim \end{array}$	$\begin{aligned} & \mathbf{a} \\ & \mathrm{m} \end{aligned}$	$\begin{aligned} & \mathbf{m} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & 9 \\ & \underset{子}{7} \end{aligned}$	$\underset{\underset{\sim}{7}}{N}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\underset{\sim}{n}$	$\stackrel{0}{\bullet}$	윽
$\begin{aligned} & \text { x } \\ & \mathbf{0} \\ & \underline{\underline{I}} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & 6 \\ & i \end{aligned}$		$\begin{aligned} & \stackrel{\text { on}}{ } \\ & \underset{\sigma}{2} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{?}{n} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \underset{\sigma}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 2 \\ & \stackrel{?}{0} \\ & 0 \\ & م \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & i \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{i} \\ & \infty \end{aligned}$	$\begin{aligned} & 2 \\ & \underset{\sim}{2} \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 20 \\ & \overbrace{}^{2} \\ & 7 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{o}} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 0_{0} \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & \text { ô } \\ & \infty \\ & \text { ふ̀ } \\ & \text { an } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & \stackrel{?}{2} \\ & \end{aligned}$	$\begin{aligned} & \text { ô } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{o} \\ & \hat{?} \\ & \dot{0} \\ & 7 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \stackrel{+}{\infty} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & i \\ & i \end{aligned}$		$$	à $\stackrel{1}{1}$ \cdots

SES		County	Census Tract	
Rank	Index		Number	Quartile
225	223.8	Ripley	9689	2
226	224	Butler	111.07	2
227	224.2	Highland	9546	2
228	224.8	Butler	109.09	2
229	225	Hamilton	232.22	2
230	226.6	Butler	109.06	2
231	228	Clermont	413.04	2
232	230	Kenton	659	2
233	231	Clermont	408	2
234	231.4	Butler	9	2
235	232.4	Campbell	511.02	2
235	232.4	Hamilton	25	2
237	232.8	Brown	9519	2
238	233	Hamilton	79	2
239	234	Hamilton	215.72	2
240	236	Clermont	407.01	2
241	236.6	Franklin	9698	2
241	236.6	Hamilton	84	2
243	239	Bracken	9502	2
244	240	Clinton	9945	2
245	241.2	Brown	9515	2
246	241.4	Switzerland	9659	2
247	242.4	Hamilton	82.01	2
248	242.6	Hamilton	30	2
249	243.2	Hamilton	215.71	2
249	243.2	Kenton	638	2
251	243.8	Hamilton	205.05	2
252	244.2	Hamilton	207.05	2

APPENDIX VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
253	244.4	Clermont	414.03	2	65.9\%	311	13.8\%	267	0.7\%	269	56.3\%	166	\$53,676	209
253	244.4	Hamilton	254.02	2	61.8\%	359	18.1\%	172	0.9\%	235	63.0\%	207	\$58,971	249
255	244.6	Hamilton	238	2	70.7\%	235	15.4\%	228	0.2\%	342	56.5\%	167	\$59,071	251
256	245.6	Hamilton	19	2	44.9\%	483	14.6\%	250	1.3\%	197	35.2\%	77	\$55,114	221
257	245.8	Campbell	521	2	68.8\%	267	19.2\%	158	0.0\%	346	67.1\%	246	\$53,856	212
258	247	Hamilton	215.04	3	65.2\%	323	10.4\%	342	0.9\%	231	42.8\%	99	\$57,239	240
259	247.4	Hamilton	99.01	3	67.9\%	276	15.2\%	229	0.8\%	250	64.9\%	226	\$59,489	256
259	247.4	Hamilton	256	3	62.6\%	350	14.0\%	263	0.0\%	346	53.8\%	155	\$44,965	123
261	247.6	Clinton	9951	3	75.3\%	160	11.7\%	311	1.9\%	143	80.1\%	372	\$59,073	252
261	247.6	Hamilton	209.01	3	68.4\%	269	14.9\%	242	0.8\%	253	72.5\%	299	\$50,417	175
263	250	Hamilton	253	3	65.4\%	320	22.5\%	104	0.0\%	346	70.1\%	279	\$52,750	201
264	251.8	Hamilton	75	3	56.7\%	414	15.6\%	221	0.0\%	346	24.5\%	40	\$57,019	238
265	252.8	Butler	106	3	75.8\%	149	16.6\%	202	0.0\%	346	72.2\%	295	\$61,090	272
266	256.2	Butler	118.02	3	74.0\%	180	8.6\%	375	2.6\%	94	76.3\%	326	\$65,352	306
266	256.2	Dearborn	806	3	82.3\%	52	12.9\%	281	0.2\%	340	72.5\%	298	\$65,578	310
266	256.2	Hamilton	225	3	70.0\%	248	10.9\%	331	1.1\%	220	59.1\%	181	\$64,946	301
269	256.4	Clermont	401.02	3	74.2\%	176	12.7\%	288	1.6\%	175	77.3\%	345	\$64,450	298
270	256.8	Hamilton	209.02	3	69.7\%	252	13.9\%	264	0.5\%	305	66.3\%	240	\$55,259	223
271	257.8	Boone	706.04	3	67.5\%	283	12.4\%	295	2.8\%	79	77.6\%	351	\$62,419	281
272	258.8	Butler	10.01	3	71.4\%	222	11.3\%	321	0.0\%	346	55.6\%	161	\$57,542	244
273	259.4	Butler	119	3	79.2\%	90	8.4\%	378	0.0\%	346	58.7\%	180	\$65,096	303
274	259.6	Kenton	613	3	60.5\%	377	20.8\%	134	1.3\%	206	82.7\%	398	\$50,846	183
275	260	Hamilton	102.01	3	62.6\%	351	15.7\%	218	0.6\%	294	61.9\%	198	\$57,146	239
276	262	Hamilton	11	3	45.5\%	477	3.7\%	481	0.0\%	346	0.0\%	1	\$9,205	5
277	262.2	Hamilton	65	3	57.4\%	408	14.0\%	258	0.9\%	242	52.2\%	146	\$59,500	257
278	262.4	Kenton	654	3	80.0\%	80	11.3\%	323	0.0\%	346	42.5\%	98	\$98,065	465
279	262.6	Clermont	401.01	3	77.2\%	128	19.5\%	154	0.4\%	315	81.1\%	380	\$68,875	336
280	263.4	Kenton	670	3	53.2\%	437	18.2\%	170	1.6\%	176	31.6\%	61	\$101,563	473

	$\begin{aligned} & \underset{\sim}{C} \\ & \end{aligned}$	$\stackrel{m}{\wedge}$	$\underset{\sim}{\mathbf{m}}$	No	N	$\underset{\sim}{\mathrm{N}}$	$\underset{\sim}{\infty}$	$\stackrel{N}{7}$	Ǹ	$\underset{N}{N}$	$\underset{\sim}{\sigma}$	en	$\underset{\sim}{\underset{N}{2}}$	$\stackrel{\infty}{\sim}$	oi	$\underset{\sim}{\underset{\sim}{*}}$	$\underset{\sim}{N}$	$\stackrel{N}{N}$	$$	\dot{m}^{∞}	$\begin{aligned} & \text { n } \\ & \stackrel{2}{n} \end{aligned}$	$\frac{n}{\mathrm{n}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \\ & \hline \end{aligned}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\infty}{\stackrel{\infty}{m}}$	\hat{m}	$\stackrel{m}{N}$	$\left\|\begin{array}{c} m \\ m \end{array}\right\|$	¢
	$\begin{aligned} & \times \times \\ & \text { 을 } \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { N } \\ & 0 \\ & \hat{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hat{0} \\ & \hat{b} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { it } \\ & \hat{0} \\ & \infty \end{aligned}$	$\begin{aligned} & N \\ & N \\ & \underset{\sim}{n} \\ & \end{aligned}$	$\begin{aligned} & \text { in } \\ & 0 \\ & 0^{\circ} \\ & \bullet \end{aligned}$	$\begin{aligned} & N \\ & N \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & -1 \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} \underset{\sim}{n} \\ \underset{N}{7} \\ \underset{\sim}{*} \end{gathered}$	$\begin{aligned} & \underset{\infty}{\infty} \\ & \underset{\sim}{0} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & 10 \\ & 0 \\ & 10 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & n \\ & \infty \\ & \infty \\ & n \\ & \sim \end{aligned}$	$$	$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{6} \\ & \forall \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & 0 \\ & 6 \end{aligned}$	$\begin{aligned} & 7 \\ & \\ & 6 \\ & 0 \\ & \infty \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 6 \end{array}\right\|$	$\begin{aligned} & 10 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \infty \end{aligned}$			$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ n \\ \underset{~}{\infty} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \omega \\ & \infty \\ & 0 \\ & \omega_{0} \\ & \omega \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 6 \\ 0 \\ 6 \end{array}\right\|$		$\left\|\begin{array}{l} N_{1} \\ \infty \\ \infty \\ 0 \\ 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\left\|\begin{array}{c} \infty \\ N_{2} \\ \sigma^{2} \\ 0 \\ - \end{array}\right\|$	N

$\underset{\sim}{\underset{c}{c}} \underset{\sim}{\sim}$

Crowding

SES		County	Census Tract	
Rank	Index		Number	Quartile
281	264.8	Hamilton	210.01	3
282	269.4	Warren	306	3
283	269.6	Hamilton	215.08	3
284	270.4	Ripley	9684	3
285	271.2	Campbell	530	3
286	271.8	Warren	323	3
287	273.4	Hamilton	214.21	3
288	275.25	Hamilton	260.02	3
289	275.6	Hamilton	215.05	3
290	276.8	Clermont	405	3
291	277.2	Clermont	413.02	3
292	277.5	Hamilton	218.01	3
293	278.4	Hamilton	111	3
294	279	Hamilton	46.01	3
295	279.2	Dearborn	804	3
296	280.8	Clermont	402.03	3
297	281.6	Dearborn	801.01	3
298	282.6	Hamilton	237.02	3
298	282.6	Kenton	646	3
300	284.2	Butler	13	3
300	284.2	Dearborn	802.01	3
300	284.2	Hamilton	232.1	3
303	287.4	Hamilton	247	3
304	287.8	Hamilton	210.03	3
305	288	Campbell	519.01	3
306	288.4	Butler	101.02	3
307	289.2	Clinton	9944	3
308	289.6	Kenton	636.04	3

APPENDIX VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
309	290.2	Campbell	524	3	72.2\%	210	14.9\%	243	0.0\%	346	82.3\%	393	\$59,904	259
309	290.2	Franklin	9696	3	65.5\%	317	14.0\%	261	1.5\%	178	85.6\%	428	\$60,781	267
309	290.2	Hamilton	56	3	66.4\%	305	17.8\%	179	0.0\%	346	76.5\%	331	\$63,561	290
309	290.2	Hamilton	221.02	3	62.8\%	347	6.1\%	438	2.7\%	84	68.8\%	263	\$66,290	319
313	291.2	Butler	120	3	77.3\%	127	16.3\%	206	0.0\%	346	84.5\%	417	\$72,042	360
313	291.2	Hamilton	237.01	3	68.7\%	268	15.4\%	227	0.0\%	346	71.1\%	288	\$66,905	327
315	291.4	Hamilton	254.01	3	64.6\%	329	17.0\%	194	0.0\%	346	77.9\%	353	\$56,326	235
316	291.6	Kenton	636.03	3	66.1\%	309	14.0\%	262	2.6\%	95	87.6\%	450	\$69,236	342
317	293.4	Kenton	611	3	60.3\%	379	12.7\%	286	2.5\%	102	76.4\%	327	\$73,444	373
318	293.6	Kenton	637.01	3	70.1\%	247	14.9\%	240	0.0\%	346	78.0\%	358	\$61,932	277
319	294	Hamilton	230.01	3	67.0\%	291	11.6\%	316	0.9\%	245	71.0\%	286	\$67,500	332
320	294.6	Clermont	407.02	3	70.8\%	233	15.0\%	236	0.0\%	346	84.3\%	415	\$57,440	243
320	294.6	Kenton	658	3	67.1\%	288	12.0\%	305	2.8\%	82	84.6\%	418	\$74,934	380
322	295	Campbell	520.01	3	73.8\%	186	12.8\%	283	1.6\%	174	85.4\%	427	\$80,111	405
323	295.4	Clermont	419	3	77.5\%	118	15.1\%	234	0.0\%	346	87.6\%	449	\$67,168	330
324	297.4	Hamilton	18	3	55.0\%	425	8.5\%	377	2.7\%	91	78.9\%	365	\$55,795	229
325	297.6	Clermont	410	3	68.1\%	273	17.6\%	184	0.7\%	282	78.9\%	366	\$75,298	383
326	298.4	Butler	133	3	70.2\%	243	12.6\%	289	1.1\%	219	85.4\%	425	\$66,250	316
327	298.6	Hamilton	207.01	3	66.3\%	307	9.8\%	355	0.7\%	268	72.9\%	303	\$60,078	260
328	298.8	Campbell	503	3	49.7\%	459	16.8\%	200	1.7\%	161	66.4\%	241	\$87,059	433
329	299	Hamilton	214.22	3	70.1\%	246	9.6\%	357	0.0\%	346	60.5\%	190	\$71,417	356
330	299.2	Butler	126	3	66.1\%	308	7.5\%	402	2.8\%	78	83.7\%	409	\$64,569	299
331	300.2	Kenton	668	3	60.2\%	381	11.8\%	307	1.7\%	167	67.6\%	252	\$78,125	394
332	300.4	Campbell	531	3	67.2\%	286	13.3\%	273	0.0\%	345	67.9\%	257	\$69,207	341
333	300.6	Campbell	525	3	63.4\%	340	18.3\%	166	0.0\%	346	70.7\%	284	\$72,963	367
334	301	Hamilton	214.01	3	69.3\%	256	12.1\%	303	2.0\%	137	88.1\%	457	\$71,134	352
335	301.2	Clermont	415.02	3	66.5\%	301	13.2\%	275	0.0\%	346	69.9\%	276	\$65,421	308
336	301.4	Hamilton	236	3	67.0\%	295	11.0\%	329	0.4\%	326	66.7\%	244	\$66,066	313

Family Income	
Index	Rank
$\$ 66,766$	323
$\$ 72,804$	365
$\$ 63,491$	287
$\$ 48,000$	151
$\$ 60,735$	265
$\$ 62,969$	285
$\$ 80,625$	408
$\$ 66,824$	325
$\$ 63,000$	286
$\$ 74,375$	377
$\$ 76,857$	389
$\$ 66,981$	329
$\$ 70,515$	347
$\$ 72,204$	362
$\$ 67,419$	331
$\$ 71,406$	355
$\$ 73,041$	368
$\$ 83,393$	418
$\$ 79,397$	401
$\$ 63,503$	288
$\$ 70,599$	349
$\$ 71,638$	358
$\$ 63,609$	291
$\$ 70,903$	351
$\$ 83,676$	421
$\$ 69,517$	344
$\$ 65,903$	311
$\$ 71,196$	353
$\$$	
$\$ 2$	

$\begin{aligned} & \underset{\substack{c \\ \\ \underset{\sim}{2}}}{ } \end{aligned}$	$\stackrel{-}{N}$	$\stackrel{N}{\sim}$	$\underset{N}{N}$	$\stackrel{\rightharpoonup}{m}$	$\underset{\sim}{n}$	$\underset{\sim}{\infty}$	$\stackrel{m}{7}$	$\underset{F}{F}$	$\begin{aligned} & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & 0 \end{aligned}$	$\underset{\sim}{N}$	\hat{m}	$\stackrel{\stackrel{1}{\sim}}{\sim}$	$\begin{aligned} & \hat{a} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \underset{m}{2} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \stackrel{2}{N} \end{aligned}$	$\begin{aligned} & \stackrel{7}{6} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { a } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \text { H} \\ & \text { m } \end{aligned}$	$$	$\begin{aligned} & \text { m } \\ & \text { m } \end{aligned}$	$\begin{aligned} & 3 \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{7}{2} \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { 능 } \end{aligned}$
	$\stackrel{\stackrel{\rightharpoonup}{n}}{i}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\begin{gathered} \text { mे } \\ \underset{\sim}{n} \end{gathered}$	$\begin{gathered} \text { 犬ે} \\ \underset{\sim}{n} \end{gathered}$	$\begin{gathered} \text { N} \\ \text { oे } \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{0}{c} \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{o}} \\ & \stackrel{+}{+} \end{aligned}$	$\stackrel{\infty}{n}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \cdots \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \dot{0} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & 0 \\ & b_{0} \\ & +i \end{aligned}$	$\begin{aligned} & \circ \\ & \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { ö } \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \underset{N}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \underset{\mathrm{~N}}{ } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \infty \\ & \underset{n}{n} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \mathrm{j} \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { ǹ } \\ & \text { n } \end{aligned}$	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{1}{i} \\ \infty \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0^{\circ} \\ & 6 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{+}{+} \\ & +\underset{\infty}{+} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$

Crowding

$\begin{aligned} & \underset{\sim}{u} \\ & \stackrel{\rightharpoonup}{\mathbb{N}} \end{aligned}$		m																											
©	$\begin{aligned} & \frac{\vdots}{む} \\ & \frac{0}{E} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	\bigcirc	$\begin{aligned} & -\underset{0}{0} \\ & -1 \end{aligned}$	\bigcirc	N 0 0 0 0 N	$\stackrel{m}{7}$	$\begin{aligned} & \mathrm{N} \\ & 0 \\ & \dot{0} \\ & \text { மे } \end{aligned}$	$\underset{\sim}{\underset{\sim}{7}}$	$\begin{aligned} & \text { ò } \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \text { in } \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & \cdots \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & - \\ & \underset{i}{1} \end{aligned}$	$\begin{aligned} & m \\ & \underset{\sim}{7} \\ & \underset{\gamma}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	Nò	$\begin{aligned} & \hline \underset{N}{N} \\ & \end{aligned}$		$\stackrel{O}{\mathrm{~N}}$	$\begin{aligned} & m \\ & \stackrel{3}{m} \\ & \underset{\gamma}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{r} \\ & \infty \\ & \underset{\sim}{0} \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \mathrm{N} \\ & \text { O} \\ & \text { O} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \underset{\sigma}{\theta} \\ & \hat{o} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \overrightarrow{7} \\ & 0 \\ & 0 \\ & \underset{7}{7} \end{aligned}$	$\begin{aligned} & \text { t } \\ & \text { in } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { No } \end{aligned}$	$\underset{\underset{\sim}{N}}{\underset{\sim}{2}}$	กิ
2 Z 0 0				$\begin{aligned} & \text { 틍 } \\ & \text { 光 } \\ & \text { 茌 } \end{aligned}$			$\begin{aligned} & \tilde{0} \\ & \text { O} \\ & 0 \\ & \cline { 1 - 2 } \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{\Xi} \\ & \text { J } \end{aligned}$	$$	$\begin{aligned} & \text { II } \\ & \text { 券 } \\ & \text { 茳 } \end{aligned}$.	$\underset{\sim}{\text { ® }}$	$\stackrel{\dot{む}}{\stackrel{\vdots}{\leftrightarrows}}$		$$	$$		$\begin{aligned} & \text { © } \\ & \text { O } \\ & \text { 甲 } \end{aligned}$	$\begin{aligned} & \text { II } \\ & \text { 券 } \\ & \text { 華 } \end{aligned}$		$\begin{aligned} & \text { II } \\ & \text { 券 } \\ & \text { 茳 } \end{aligned}$	$\stackrel{\vdots}{ \pm}$	$\begin{aligned} & \text { E } \\ & \text { 券 } \\ & \text { 茳 } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { 者 } \\ & \text { 茳 } \end{aligned}$	$\underset{\sim}{\text { © }}$			$\begin{aligned} & \text { 芯 } \\ & \text { B } \\ & \text { E } \\ & \text { B } \end{aligned}$	$\begin{gathered} \text { E } \\ \text { 0. } \\ \underset{\sim}{0} \\ \hline \end{gathered}$
		$\begin{aligned} & \mathrm{H} \\ & \text { j} \\ & \text { on } \end{aligned}$	$\begin{array}{\|l\|} \hline N \\ \underset{m}{n} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline N \\ \underset{\sim}{3} \\ \text { N } \end{array}$	$\begin{aligned} & \text { o} \\ & \dot{+} \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{+} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \dot{\circ} \\ & m \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{\circ} \\ & \text { n } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { No } \end{aligned}$	$\begin{aligned} & N \\ & \infty \\ & \infty \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & \dot{H} \\ & 0 \\ & \dot{m} \end{aligned}$	$\stackrel{-}{m}$	$\begin{aligned} & \infty \\ & \underset{m}{-} \end{aligned}$	$\stackrel{m}{m}$	$\underset{m}{\underset{m}{2}}$	$\begin{aligned} & \bullet \\ & \underset{1}{n} \end{aligned}$	$\stackrel{n}{m}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & -1 \\ & m \end{aligned}$	$\stackrel{N}{n}$	$\stackrel{N}{n}$	$\begin{aligned} & \dot{+} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{m} \end{aligned}$	$\underset{\mathrm{N}}{\mathrm{~N}}$	$\begin{gathered} 0 \\ \underset{\sim}{N} \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \underset{\sim}{m} \end{aligned}$	n
	$\begin{aligned} & \underset{\underset{c}{\underset{~}{0}}}{\substack{0}} \end{aligned}$	$\underset{m}{n}$	$\begin{aligned} & \infty \\ & m \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{m}{2} \end{aligned}$	$\stackrel{\text { O}}{\mathrm{m}}$	$\stackrel{\substack{4 \\ m \\ \hline}}{ }$	$\underset{\sim}{\text { N }}$	$\stackrel{m}{\underset{m}{4}}$	$\underset{m}{+}$	$\stackrel{1}{+}$	$\begin{aligned} & \text { o } \\ & \text { m } \end{aligned}$	$\stackrel{\text { N}}{\stackrel{+}{2}}$	$\stackrel{\infty}{+}$	$\stackrel{9}{+}$	응	$\stackrel{-7}{n}$	N	$\stackrel{m}{n}$	~~	$\begin{aligned} & \text { 닝 } \\ & \text { n } \end{aligned}$	$\stackrel{\text { 뇨 }}{\stackrel{n}{n}}$	N	N		$\begin{aligned} & \text { oे } \\ & \text { n } \end{aligned}$	$\overrightarrow{-7}$	No	$\begin{aligned} & n \\ & \end{aligned}$	$\begin{aligned} & n \\ & e \\ & \hline \end{aligned}$

APPENDIX VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
365	323.4	Clermont	414.04	3	58.2\%	398	11.8\%	308	0.0\%	346	67.9\%	256	\$65,509	309
366	324	Campbell	522	3	66.5\%	304	8.7\%	374	0.0\%	346	76.7\%	333	\$60,536	263
367	324.2	Kenton	636.05	3	65.7\%	315	11.6\%	317	0.6\%	289	81.1\%	382	\$66,270	318
368	324.4	Warren	311	3	71.0\%	230	12.6\%	290	1.1\%	221	87.6\%	451	\$86,452	430
369	324.6	Hamilton	57.01	3	50.3\%	450	6.2\%	434	0.0\%	346	52.7\%	147	\$57,917	246
370	324.8	Butler	107	3	67.8\%	277	13.7\%	269	0.5\%	307	83.6\%	407	\$72,675	364
371	325.4	Hamilton	213.03	3	65.1\%	325	6.2\%	433	1.2\%	214	67.4\%	248	\$80,558	407
371	325.4	Hamilton	243.03	3	63.7\%	336	9.9\%	352	0.7\%	266	68.8\%	264	\$81,048	409
373	326.2	Hamilton	222	3	61.3\%	365	8.8\%	370	1.3\%	198	74.5\%	311	\$75,893	387
374	327.2	Hamilton	226.02	3	60.2\%	384	1.8\%	504	2.3\%	118	62.4\%	203	\$85,250	427
375	327.4	Hamilton	210.02	3	70.6\%	239	10.4\%	341	0.0\%	346	81.2\%	383	\$66,944	328
376	327.6	Hamilton	235.22	3	58.3\%	397	10.9\%	332	0.6\%	290	67.3\%	247	\$73,235	372
377	331.6	Warren	319.04	3	66.9\%	297	7.3\%	405	1.2\%	212	78.2\%	360	\$75,357	384
378	332.6	Hamilton	7	3	57.0\%	413	25.8\%	70	1.1\%	222	100.0\%	508	\$91,484	450
379	336	Boone	703.08	3	64.5\%	330	8.2\%	381	0.4\%	329	70.4\%	281	\$71,960	359
380	336.8	Butler	112	3	60.8\%	372	5.4\%	446	2.2\%	128	77.0\%	338	\$79,302	400
381	337.6	Hamilton	215.01	3	63.4\%	342	9.6\%	359	0.0\%	346	69.8\%	272	\$73,108	369
382	338.4	Hamilton	46.03	3	60.2\%	383	7.7\%	398	0.7\%	264	82.3\%	394	\$59,115	253
383	340	Warren	313	3	58.0\%	402	6.5\%	422	0.6\%	285	59.4\%	182	\$81,048	409
384	340.5	Hamilton	57.02	3	57.7\%	406	8.9\%	369	0.0\%	346	41.2\%	93	\$57,256	241
385	340.6	Kenton	641	3	59.4\%	390	7.8\%	394	3.5\%	53	86.0\%	435	\$86,667	431
386	341.4	Campbell	529	3	63.1\%	344	12.6\%	291	0.6\%	284	78.1\%	359	\$85,904	429
386	341.4	Clermont	411.01	3	67.3\%	284	11.1\%	328	0.4\%	318	83.2\%	401	\$74,222	376
388	341.6	Campbell	519.03	3	69.1\%	261	10.3\%	344	0.9\%	237	86.7\%	444	\$83,696	422
389	342.6	Kenton	649	4	54.3\%	429	8.0\%	388	0.0\%	346	48.5\%	130	\$83,438	420
390	343	Warren	320.03	4	52.0\%	442	4.7\%	461	1.2\%	208	60.0\%	188	\$83,197	416
391	344.4	Hamilton	242	4	49.8\%	458	14.1\%	256	1.4\%	189	77.1\%	340	\$105,536	479
392	346	Butler	14	4	67.7\%	279	10.6\%	337	0.6\%	301	86.6\%	442	\$73,168	371

Family Income	
Index	Rank
$\$ 61,250$	274
$\$ 85,759$	428
$\$ 66,700$	321
$\$ 79,753$	403
$\$ 71,299$	354
$\$ 83,393$	418
$\$ 70,886$	350
$\$ 70,066$	346
$\$ 110,556$	486
$\$ 73,144$	370
$\$ 78,510$	395
$\$ 69,201$	340
$\$ 75,673$	386
$\$ 69,167$	338
$\$ 76,890$	390
$\$ 76,953$	391
$\$ 97,066$	463
$\$ 89,322$	445
$\$ 73,663$	374
$\$ 72,837$	366
$\$ 88,505$	440
$\$ 80,139$	406
$\$ 70,529$	348
$\$ 75,610$	385
$\$ 77,900$	393
$\$ 75,132$	381
$\$ 79,009$	398
$\$ 83,016$	415
$\$ 7$	

$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{\Gamma}} \\ & \underset{\sim}{c} \end{aligned}$	응	$\stackrel{\underset{7}{4}}{\underset{\sim}{4}}$	인	$\begin{aligned} & 7 \\ & 0 \\ & \hline \end{aligned}$	$\underset{+}{\mathrm{t}}$	∞	\hat{N}	$\underset{m}{n}$	$\stackrel{N}{N}$	$\underset{N}{ }$	$\stackrel{\sim}{N}$	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\infty}$	$\begin{aligned} & 0 \\ & m \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { n } \end{aligned}$		$\stackrel{N}{m}$	$\underset{7}{7}$	N	$\underset{+}{\infty}$	$\begin{aligned} & \overrightarrow{6} \\ & m \end{aligned}$	$\underset{+}{4}$	∞_{0}^{∞}	$\stackrel{\circ}{\mathrm{e}}$		$\begin{aligned} & \text { N } \\ & \text { an } \end{aligned}$	\hat{m}
$\begin{aligned} & \text { d } \\ & \underline{I} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { m} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { ò } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{2} \\ & \stackrel{i}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} 0 \\ \stackrel{\rightharpoonup}{2} \\ \stackrel{\rightharpoonup}{0} \end{gathered}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{n} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{q}}}{\stackrel{\rightharpoonup}{n}}$		$\begin{aligned} & \mathbf{o}^{\circ} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oి } \\ & \text { m } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { oे } \\ & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { ஸ. } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \stackrel{+}{i} \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{0}{7} \\ & \stackrel{+}{i} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{+}{N} \end{aligned}$	$\begin{aligned} & \hat{l}^{\circ} \\ & \dot{+} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \dot{\infty} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2}_{+}^{+} \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \mathbf{l}^{\circ} \\ & 0 . \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 . \\ & 0 . \\ & 0 \\ & \hline- \end{aligned}$	$\begin{aligned} & \text { ồ } \\ & 0 \\ & 0 \\ & \hat{n} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \underset{\infty}{0} \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & -i \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$

Crowding

Appendix VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
421	375	Hamilton	251.02	4	61.3\%	364	4.1\%	475	0.6\%	295	77.1\%	342	\$79,097	399
422	375.4	Warren	316	4	60.6\%	374	9.8\%	356	0.0\%	346	86.5\%	440	\$72,092	361
423	378.4	Hamilton	205.01	4	61.4\%	363	8.9\%	367	0.0\%	346	89.6\%	471	\$70,000	345
424	378.6	Butler	109.07	4	64.1\%	332	7.9\%	391	0.0\%	346	91.4\%	485	\$69,179	339
424	378.6	Hamilton	42	4	41.1\%	497	16.1\%	209	0.0\%	346	82.2\%	392	\$90,259	449
426	379	Boone	704.01	4	53.9\%	431	6.8\%	418	1.7\%	160	83.4\%	403	\$107,425	483
426	379	Campbell	519.04	4	61.6\%	362	9.0\%	365	0.0\%	346	85.9\%	434	\$76,597	388
426	379	Hamilton	260.01	4	74.1\%	178	3.7\%	483	0.0\%	346	87.1\%	445	\$88,882	443
429	380.2	Kenton	648	4	51.6\%	446	6.3\%	431	0.7\%	283	72.4\%	297	\$89,297	444
430	381	Hamilton	239.01	4	47.8\%	471	4.4\%	469	3.1\%	66	88.8\%	461	\$87,685	438
431	381.4	Hamilton	52	4	49.2\%	464	6.4\%	425	0.0\%	346	65.6\%	233	\$87,870	439
432	381.6	Butler	101.03	4	43.2\%	491	3.7\%	480	0.0\%	346	65.0\%	228	\$72,532	363
433	383.2	Boone	706.03	4	61.9\%	355	6.3\%	430	0.6\%	293	81.2\%	384	\$92,642	454
434	384.8	Warren	312	4	61.1\%	369	4.8\%	457	0.4\%	317	77.3\%	346	\$87,384	435
435	386	Butler	111.13	4	53.3\%	435	4.6\%	462	1.0\%	226	77.4\%	348	\$94,661	459
436	386.4	Hamilton	106	4	67.0\%	292	4.3\%	472	0.0\%	346	100.0\%	508	\$66,071	314
437	387	Boone	703.07	4	62.2\%	353	5.4\%	444	0.4\%	327	79.4\%	369	\$88,767	442
438	388.4	Kenton	640	4	57.2\%	411	4.2\%	473	1.5\%	184	84.1\%	412	\$97,054	462
439	388.8	Warren	305.03	4	56.6\%	417	6.4\%	427	0.0\%	346	76.5\%	329	\$83,811	425
440	389	Hamilton	12	4	34.8\%	506	3.1\%	492	0.0\%	346	62.5\%	205	\$78,750	396
441	389.2	Butler	109.03	4	59.2\%	392	8.8\%	371	0.0\%	346	88.3\%	458	\$74,850	379
442	390.8	Kenton	647	4	53.6\%	434	4.4\%	468	0.7\%	274	81.4\%	386	\$77,159	392
443	393.8	Butler	109.02	4	57.2\%	412	6.3\%	432	0.0\%	346	78.5\%	362	\$83,250	417
444	395.6	Hamilton	208.02	4	55.7\%	420	11.0\%	330	0.4\%	319	93.6\%	498	\$81,098	411
445	397.4	Warren	320.06	4	50.3\%	451	4.5\%	463	1.7\%	159	87.9\%	456	\$93,352	458
446	397.6	Butler	110.02	4	61.9\%	358	8.0\%	386	0.0\%	346	89.9\%	474	\$83,782	424
447	398.2	Butler	111.1	4	61.6\%	361	6.4\%	428	0.0\%	346	85.2\%	424	\$86,966	432
448	399.4	Clermont	404.01	4	51.2\%	448	7.2\%	408	0.0\%	346	82.2\%	391	\$80,000	404

Family Income	
Index	Rank
$\$ 95,658$	461
$\$ 92,292$	453
$\$ 92,975$	455
$\$ 100,781$	471
$\$ 88,750$	423
$\$ 250,001$	514
$\$ 82,917$	414
$\$ 82,723$	413
$\$ 84,187$	426
$\$ 87,665$	437
$\$ 98,571$	466
$\$ 150,658$	509
$\$ 89,500$	446
$\$ 79,655$	402
$\$ 107,321$	482
$\$ 101,932$	474
$\$ 93,125$	457
$\$ 105,563$	480
$\$ 100,938$	472
$\$ 110,625$	487
$\$ 95,271$	460
$\$ 99,327$	469
$\$ 98,665$	467
$\$ 78,852$	397
$\$ 99,400$	470
$\$ 91,614$	451
$\$ 97,119$	464
$\$ 10$	

ِ		$\underset{\mathrm{N}}{\mathrm{~N}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { b } \\ & \text { しN } \end{aligned}$	$\stackrel{n}{n}$	$\begin{aligned} & 0 \\ & \mathrm{~m} \end{aligned}$	$\underset{\sim}{\mathrm{m}}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & \cdots \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { n } \end{aligned}$	$\begin{aligned} & 0 \\ & \hline+ \\ & 7 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 6 \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{n}{n} \end{aligned}$	$$	$\stackrel{7}{7}$	$\begin{aligned} & \text { n } \\ & \text { n } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{2} \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \underset{4}{2} \end{aligned}$	$\stackrel{N}{\mathrm{~N}}$	$\begin{aligned} & \stackrel{9}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 9 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 1 \end{aligned}$	$\stackrel{m}{\mathrm{~m}}$	$\begin{aligned} & +\infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\underset{\sim}{N}$	$\begin{array}{\|c} \infty \\ \underset{\sim}{\infty} \end{array}$	$$
$\underset{\substack{\overline{I N}}}{\substack{\text { n }}}$	$\begin{aligned} & \text { × } \\ & \text { © } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { oे } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \text { Nे} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { ì } \\ & 0 \\ & \infty \end{aligned}$		$\begin{aligned} & \text { ô } \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & 0 \\ & \vec{c} \\ & \overrightarrow{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \underset{\sim}{i} \\ & \infty \end{aligned}$	$\begin{aligned} & 00 \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { ô } \\ & +0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{0}{\mathrm{~N}} \\ & \text { n} \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \underset{\sim}{i} \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & 6 \\ & 0 \end{aligned}$	$\begin{aligned} & 00 \\ & \stackrel{\square}{1} \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{\infty} \\ & \hline \end{aligned}$	$$	$\begin{array}{\|l} \hline 0 \\ \text { ob } \\ 0 . \\ \hline 0 \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \dot{O} \\ \dot{B} \\ \infty \end{array}$	$\begin{aligned} & \text { o̊ } \\ & \text { oे } \\ & \text { on } \end{aligned}$		$\begin{array}{\|l} \hline 0 \\ 0 \\ 10 \\ 0 \\ \infty \end{array}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & m \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{\|l} \hline 00 \\ 0 \\ 0 \\ \infty \end{array}$		$$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ + \\ + \\ \infty \end{array}$	$\begin{aligned} & 20 \\ & 0 \\ & - \\ & \text { à } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \infty \end{aligned}$
	$\begin{aligned} & \bar{N} \\ & \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{4}{2} \end{aligned}$	$\stackrel{-}{N}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{+}{2} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 0 \\ m \end{array} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 0 \\ m \end{array} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \mathbf{m} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { m } \end{aligned}$	$\stackrel{N}{N}$	$\stackrel{\rightharpoonup}{\lambda}$	$\left\lvert\, \begin{aligned} & \circ \\ & 1 \end{aligned}\right.$	$\stackrel{\bullet}{4}$	$\begin{aligned} & \hline \mathbf{o} \\ & \mathbf{m} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { o } \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \underset{N}{2} \end{aligned}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$\begin{aligned} & \text { F } \\ & \text { m } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { m } \end{aligned}$	$\begin{aligned} & 9 \\ & \underset{N}{2} \end{aligned}$	$\underset{\sim}{-}$	$\left\|\begin{array}{l} 0 \\ \mathbf{1} \\ m \end{array}\right\|$	$\stackrel{\circ}{\mathrm{N}}$	$\begin{aligned} & \text { o } \\ & \text { m } \end{aligned}$	$\stackrel{\bullet}{+}$
\bar{y}		O.	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & 0 . \end{aligned}$	$\begin{aligned} & 0 \\ & 0 . \\ & 0 . \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	oे	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	oి	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	oి	$\begin{aligned} & \text { O} \\ & \stackrel{0}{\mathrm{o}} \end{aligned}$	$\begin{aligned} & \text { ô } \\ & \text { in } \end{aligned}$	$\begin{gathered} 0 \\ \hat{0} \\ \text { n} \end{gathered}$	oे	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \text { O? } \\ & \text { n? } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O? } \\ & \text { 웅 } \end{aligned}$	$\left.\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ô } \\ & 0 . \end{aligned}$
		$\underset{\sim}{N}$	$\underset{\sim}{\infty}$	$\underset{~+~}{~+}$	$\begin{aligned} & \underset{子}{7} \\ & \underset{7}{2} \end{aligned}$	$$	$\underset{i}{i}$	$\frac{7}{6}$	$\begin{aligned} & \text { m } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\stackrel{i}{i}$	$$	$\begin{aligned} & \text { n } \\ & \text { b } \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { n } \\ & \text { on } \end{aligned}$	$$	$\begin{array}{\|c} \stackrel{N}{m} \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \underset{4}{2} \end{aligned}$	$\begin{array}{\|c\|} \underset{~}{\mathrm{~T}} \end{array}$	$\begin{aligned} & 0 \\ & 7 \\ & 7 \end{aligned}$	$\underset{\sim}{\underset{\sim}{2}}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { n } \end{aligned}$	$\begin{aligned} & 9 \\ & 0 \\ & i \end{aligned}$	$\stackrel{\sim}{\underset{F}{2}}$	$\begin{aligned} & 0 \\ & \stackrel{i}{7} \\ & \hline \end{aligned}$	$\underset{\text { g }}{6}$	$$	$\begin{aligned} & \infty \\ & \sim \end{aligned}$
굴	$\begin{aligned} & \text { x } \\ & \text { 으́ } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{W}} \\ & \dot{6} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{m}} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & + \end{aligned}$	$\stackrel{\circ}{0}$	$\begin{aligned} & \hline 0 \\ & 6 \\ & i \\ & i \end{aligned}$	$\stackrel{\circ}{\dot{+}}$	$\begin{aligned} & 20 \\ & \stackrel{0}{1} \\ & \hline \end{aligned}$	$\stackrel{\text { oे }}{\substack{n}}$	$\begin{array}{\|l\|} \hline \stackrel{0}{0} \\ \mathbf{N} \\ \hline \end{array}$	$\stackrel{\text { ®O}}{\underset{\sim}{r}}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{2} \\ & \vdots \\ & \dot{\gamma} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0}^{\wedge} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { o } \\ & \text { N } \end{aligned}$	$\begin{aligned} & 3 \\ & \stackrel{0}{2} \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{0}{7} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{gathered} o \\ \underset{n}{n} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \hat{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{7} \\ & \underset{1}{2} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \\ & 0 \\ & i \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{o}} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \text { m } \\ & \text { in } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{o}^{\circ} \\ \stackrel{\rightharpoonup}{3} \\ \hline \end{array}$	$$	$\begin{array}{\|l} \hline \text { oे } \\ \text { ó } \end{array}$	$\begin{aligned} & \circ \\ & \infty \\ & \dot{+} \end{aligned}$

SES		County	Census Tract	
Rank	Index		Number	Quartile
449	399.6	Hamilton	240.02	4
450	401	Hamilton	212.02	4
451	401.8	Boone	703.09	4
452	402	Clermont	406	4
453	402.2	Campbell	504	4
454	402.4	Hamilton	250.02	4
455	402.6	Hamilton	14	4
456	403.4	Hamilton	240.01	4
457	404.4	Hamilton	205.02	4
458	405.2	Dearborn	801.02	4
458	405.2	Hamilton	221.01	4
460	406	Warren	320.05	4
461	406.6	Hamilton	45	4
462	407.4	Butler	111.11	4
463	408.4	Hamilton	250.01	4
464	409.2	Campbell	513	4
465	409.8	Hamilton	59	4
466	411.2	Hamilton	206.01	4
467	412.6	Butler	111.01	4
468	413.2	Clermont	415.01	4
469	413.8	Warren	322.02	4
470	414	Warren	308	4
471	415.2	Hamilton	224	4
472	418	Hamilton	251.03	4
473	419	Hamilton	208.12	4
474	420.4	Warren	319.02	4
475	420.8	Hamilton	211.02	4
476	421.2	Hamilton	213.02	4

APPENDIX VII														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
477	422.4	Hamilton	211.01	4	59.8\%	388	5.4\%	445	0.0\%	346	91.6\%	486	\$89,552	447
478	423.6	Warren	322.01	4	54.6\%	428	5.4\%	443	0.0\%	346	87.8\%	453	\$89,561	448
479	426	Hamilton	241	4	46.4\%	474	4.5\%	464	0.0\%	346	84.0\%	410	\$87,473	436
480	428.8	Warren	320.04	4	43.4\%	489	6.1\%	436	0.8\%	255	90.0\%	475	\$112,361	489
481	430	Hamilton	243.21	4	48.1\%	470	4.9\%	452	0.4\%	323	84.7\%	421	\$107,692	484
482	432	Hamilton	71	4	35.4\%	505	7.0\%	414	0.0\%	346	83.6\%	405	\$113,333	490
483	434.2	Butler	111.08	4	45.0\%	482	3.9\%	478	0.0\%	346	81.8\%	387	\$104,712	478
483	434.2	Hamilton	13	4	58.5\%	395	1.2\%	507	0.0\%	346	86.4\%	438	\$108,618	485
485	435.6	Hamilton	233	4	29.0\%	511	3.0\%	494	1.7\%	164	98.4\%	507	\$126,094	502
486	437	Kenton	655.02	4	45.5\%	478	4.5\%	465	0.0\%	346	88.8\%	462	\$87,131	434
487	439.6	Hamilton	47.01	4	39.5\%	499	4.7\%	459	0.0\%	346	83.5\%	404	\$113,333	490
488	440	Butler	111.04	4	50.0\%	455	5.5\%	442	0.0\%	346	90.9\%	481	\$104,091	476
489	440.2	Campbell	523.02	4	50.0\%	454	2.7\%	498	0.0\%	346	85.4\%	426	\$104,167	477
490	440.4	Hamilton	249.02	4	45.1\%	480	4.9\%	456	0.3\%	331	86.5\%	441	\$114,114	494
491	440.6	Butler	111.06	4	51.2\%	447	3.3\%	489	0.0\%	346	87.1\%	446	\$102,745	475
492	441.2	Hamilton	239.02	4	44.0\%	488	7.4\%	404	0.0\%	346	89.0\%	464	\$132,500	504
493	444.6	Kenton	655.01	4	53.7\%	433	2.5\%	500	0.0\%	346	92.1\%	488	\$93,095	456
493	444.6	Warren	305.04	4	48.2\%	468	7.0\%	413	0.0\%	346	95.3\%	503	\$114,069	493
495	446.8	Warren	309	4	43.2\%	490	3.1\%	491	0.7\%	277	90.4\%	476	\$121,792	500
496	447.6	Hamilton	207.07	4	50.2\%	452	3.6\%	484	0.3\%	335	93.7\%	499	\$99,167	468
497	450.4	Hamilton	51	4	42.8\%	494	0.0\%	513	0.0\%	346	83.3\%	402	\$115,852	497
498	451.75	Hamilton	235.01	4	34.0\%	507	4.9\%	453	0.0\%	346	92.3\%	491	\$125,840	501
499	454	Clermont	403	4	45.5\%	476	3.1\%	490	0.3\%	337	89.2\%	468	\$121,101	499
500	454.2	Hamilton	231	4	49.1\%	465	4.4\%	471	0.0\%	346	93.9\%	501	\$111,250	488
501	456.8	Hamilton	248	4	39.1\%	500	4.0\%	477	0.0\%	346	89.1\%	466	\$114,167	495
502	457.6	Hamilton	48	4	27.8\%	512	0.4\%	510	0.7\%	276	90.9\%	480	\$166,087	510
503	458	Hamilton	49	4	39.0\%	501	0.4\%	509	0.0\%	346	85.6\%	429	\$132,647	505
503	458	Hamilton	226.01	4	36.9\%	503	3.1\%	493	0.0\%	346	87.7\%	452	\$114,316	496

APPENDIX VII SES INDEX AN														
SES		County	Census Tract		Occupation		Education		Crowding		Family Structure		Family Income	
Rank	Index		Number	Quartile	Index	Rank								
505	458.2	Hamilton	243.22	4	38.6\%	502	3.3\%	488	0.6\%	302	92.4\%	492	\$142,184	507
506	461.4	Hamilton	245	4	44.2\%	487	0.2\%	511	0.3\%	334	89.2\%	467	\$150,000	508
507	461.6	Hamilton	251.01	4	44.7\%	484	2.8\%	496	0.0\%	346	92.3\%	490	\$113,839	492
508	462	Hamilton	212.01	4	45.0\%	481	3.5\%	485	0.0\%	346	93.9\%	500	\$116,453	498
509	465.4	Warren	319.03	4	40.9\%	498	2.5\%	501	0.3\%	336	92.2\%	489	\$128,324	503
510	466	Butler	111.12	4	41.5\%	496	2.3\%	502	0.4\%	330	93.2\%	496	\$134,500	506
511	468.8	Hamilton	244	4	35.9\%	504	0.2\%	512	0.5\%	313	94.2\%	502	\$227,042	513
512	469.2	Hamilton	50	4	33.8\%	508	1.6\%	506	0.0\%	346	95.6\%	505	\$105,625	481
513	469.4	Hamilton	251.04	4	33.1\%	509	0.7\%	508	0.0\%	346	89.9\%	473	\$206,500	511
514	471.25	Hamilton	43	4	25.4\%	514	0.0\%	513	0.0\%	346	(2)		\$223,333	512
(1)	----	Butler	101.04	---										
(1)	----	Butler	102.01	---										
(1)	---	Hamilton	1	---										
(1)	---	Hamilton	62.02	---										
(1)	---	Warren	317	---										
	QUARTILE FOR TRACTS BY RANK													
	158.95	1												
	246.4	2												
	341.2	3												
	471.25	4												
(1)	ACS data does not allow computation of two or more indices (institutionalized population)													
(2)	ACS estimates no children under 18 years living in census tract													

Changes in Statistical Neighborhood Approximations (SNAs) for the 2010 Census

These SNA definitions are not used in this edition because they were just published.

1. Fairview Clifton-Heights and University Heights have been combined into a neighborhood called CUF (an acronym of the combined names Clifton Heights, University Heights, Fairview). There is no change in the tracts included.
2. CBD-Riverfront is redesignated as Downtown and Tracts 6 and 7 are replaced by Tract 7 and Tract 265 (BG 2). BG 1 is in the West End.
3. East End - Tracts 43 and 44 are combined in new Tract 266.
4. Westwood is divided into East Westwood -- Tracts 88 (BG 1) and 100.02 (BG 4) and Westwood.
5. Lower Price Hill (BG 2) and Queensgate (BG 1) form the new Tract 263.
6. South Cumminsville-Millvale is divided. BG 1 of Tract 77 becomes Millvale and BG 2 becomes South Cumminsville.
7. Mt. Adams - Tracts 12 and 13 form the new Tract 268.
8. North Fairmount-English Woods is divided. North Fairmount is BG 1-3 of Tract 86.01 and English Woods is BG 4.
9. Over-the-Rhine - Tract 11 becomes Pendleton.
10. Riverside and Sedamsville are divided. Riverside is Tract 103 (BG 2) and Tract 104. Sedamsville is Tract 103 (BG 1).
11. Fay Apartments becomes Roll Hill.
12. South Fairmount - Tracts 87 and 89 are combined into new Tract 272.
13. Winton Place becomes Spring Grove Village.
14. West End - Most tracts and combined are renumbered. The new Tract 265 is shared with Downtown.

[^0]: Cincinnati Queensgate 3. CBD - Riverfront
 $\begin{array}{ll}\text { 4. Over-the-Rhine } & \text { 26. Hartwell } \\ \text { 5. Mt. Adams } & \text { 27. Carthage } \\ \text { 6. Mt. Auburn } & \text { 28. Roselawn }\end{array}$
 29. Bond Hill
 30. N. Avondale -
 31. Avondale
 33. Winton Place
 34. Northside
 36. Winton Hills
 37. College Hill
 7. Fairview - Clifton Heights
 8. Camp Washington 8. Camp Washington
 9. University Heights
 10. Corryville
 11. Walnut Hills
 12. Evanston
 13. Evanston - E. Walnut Hills
 14. E. Walnut Hills 14. E. Walnut Hills
 15. East End
 19. Mt. Lookout

 40. Fay Apartunt - English Woods
 42. Lower Price Hill
 43. East Price Hill
 44. West Price Hill

[^1]: ${ }^{a}$ Neighborhood has no families below poverty level. Therefore, percent is an undefined number.

[^2]: 12. Evanston
 13. Evanston - E. Walnut Hills
 14. E. Walnut Hills

 15. California
 16. Mt. Lookout - Columbia Tus.
 17. Mt. Lookout
 18. Linwood
 19. Hyde Park
[^3]: 12. Evanston
 13. Evanston - E. Walnut tills
 14. E. Walnut Hills
 15. East End
 16. Evanston - E. Walnut Hills
 17. E. Wanut Hills
 18. East End
 19. California
 20. Mt. Lookout - Columbia Tus.
 21. Mt. Lookout
 22. Linwood
 23. Hyde Park
 24. Oakley
[^4]: Cincinnati Neighborhood Approximation

[^5]: 6. Mt. Auburn
 7. Fairview - Clifton Heights
 8. Camp Washington
 9. University Heights
 10. Corryville
 11. Walnut Hills
 12. Evanston
 13. Evanston - E. Walnut Hills
 14. E. Walnut Hills
 15. East End
 16. California
 17. Mt. Washington
 18. Mt. Lookout - Columbia Tus.
 19. Mt. Lookout
 20. Linwood
 21. Hyde Park
 22. Oakley . CBD-Riverfront
 23. Over-the-Rhin
[^6]: a SES Index Value calculated for Census tract 43, despite lacking data for one of the five indicator values
 ${ }^{\text {c }}$ SES Index Value not calculated for Census tract 62.02 due to lack of data for four of the five indicator values

